Description: An element of a transitive set is a proper subset of it. Theorem 7.2 in TakeutiZaring p. 35. Unlike tz7.2 , ax-reg is required for its proof. (Contributed by Andrew Salmon, 13-Nov-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | trelpss | |- ( ( Tr A /\ B e. A ) -> B C. A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfregfr | |- _E Fr A |
|
2 | tz7.2 | |- ( ( Tr A /\ _E Fr A /\ B e. A ) -> ( B C_ A /\ B =/= A ) ) |
|
3 | 1 2 | mp3an2 | |- ( ( Tr A /\ B e. A ) -> ( B C_ A /\ B =/= A ) ) |
4 | df-pss | |- ( B C. A <-> ( B C_ A /\ B =/= A ) ) |
|
5 | 3 4 | sylibr | |- ( ( Tr A /\ B e. A ) -> B C. A ) |