Metamath Proof Explorer


Theorem trint

Description: The intersection of a class of transitive sets is transitive. Exercise 5(b) of Enderton p. 73. (Contributed by Scott Fenton, 25-Feb-2011) (Proof shortened by BJ, 3-Oct-2022)

Ref Expression
Assertion trint
|- ( A. x e. A Tr x -> Tr |^| A )

Proof

Step Hyp Ref Expression
1 triin
 |-  ( A. x e. A Tr x -> Tr |^|_ x e. A x )
2 intiin
 |-  |^| A = |^|_ x e. A x
3 treq
 |-  ( |^| A = |^|_ x e. A x -> ( Tr |^| A <-> Tr |^|_ x e. A x ) )
4 2 3 ax-mp
 |-  ( Tr |^| A <-> Tr |^|_ x e. A x )
5 1 4 sylibr
 |-  ( A. x e. A Tr x -> Tr |^| A )