Description: The intersection of a class of transitive sets is transitive. Exercise 5(b) of Enderton p. 73. (Contributed by Scott Fenton, 25-Feb-2011) (Proof shortened by BJ, 3-Oct-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | trint | |- ( A. x e. A Tr x -> Tr |^| A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | triin | |- ( A. x e. A Tr x -> Tr |^|_ x e. A x ) |
|
2 | intiin | |- |^| A = |^|_ x e. A x |
|
3 | treq | |- ( |^| A = |^|_ x e. A x -> ( Tr |^| A <-> Tr |^|_ x e. A x ) ) |
|
4 | 2 3 | ax-mp | |- ( Tr |^| A <-> Tr |^|_ x e. A x ) |
5 | 1 4 | sylibr | |- ( A. x e. A Tr x -> Tr |^| A ) |