Description: The congruence relation in a Tarski geometry. (Contributed by Thierry Arnoux, 24-Aug-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | trkgstr.w | |- W = { <. ( Base ` ndx ) , U >. , <. ( dist ` ndx ) , D >. , <. ( Itv ` ndx ) , I >. } | |
| Assertion | trkgitv | |- ( I e. V -> I = ( Itv ` W ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | trkgstr.w |  |-  W = { <. ( Base ` ndx ) , U >. , <. ( dist ` ndx ) , D >. , <. ( Itv ` ndx ) , I >. } | |
| 2 | 1 | trkgstr | |- W Struct <. 1 , ; 1 6 >. | 
| 3 | itvid | |- Itv = Slot ( Itv ` ndx ) | |
| 4 | snsstp3 |  |-  { <. ( Itv ` ndx ) , I >. } C_ { <. ( Base ` ndx ) , U >. , <. ( dist ` ndx ) , D >. , <. ( Itv ` ndx ) , I >. } | |
| 5 | 4 1 | sseqtrri |  |-  { <. ( Itv ` ndx ) , I >. } C_ W | 
| 6 | 2 3 5 | strfv | |- ( I e. V -> I = ( Itv ` W ) ) |