Description: Lemma for trlsegvdeg . (Contributed by AV, 21-Feb-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | trlsegvdeg.v | |- V = ( Vtx ` G ) |
|
trlsegvdeg.i | |- I = ( iEdg ` G ) |
||
trlsegvdeg.f | |- ( ph -> Fun I ) |
||
trlsegvdeg.n | |- ( ph -> N e. ( 0 ..^ ( # ` F ) ) ) |
||
trlsegvdeg.u | |- ( ph -> U e. V ) |
||
trlsegvdeg.w | |- ( ph -> F ( Trails ` G ) P ) |
||
trlsegvdeg.vx | |- ( ph -> ( Vtx ` X ) = V ) |
||
trlsegvdeg.vy | |- ( ph -> ( Vtx ` Y ) = V ) |
||
trlsegvdeg.vz | |- ( ph -> ( Vtx ` Z ) = V ) |
||
trlsegvdeg.ix | |- ( ph -> ( iEdg ` X ) = ( I |` ( F " ( 0 ..^ N ) ) ) ) |
||
trlsegvdeg.iy | |- ( ph -> ( iEdg ` Y ) = { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } ) |
||
trlsegvdeg.iz | |- ( ph -> ( iEdg ` Z ) = ( I |` ( F " ( 0 ... N ) ) ) ) |
||
Assertion | trlsegvdeglem5 | |- ( ph -> dom ( iEdg ` Y ) = { ( F ` N ) } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trlsegvdeg.v | |- V = ( Vtx ` G ) |
|
2 | trlsegvdeg.i | |- I = ( iEdg ` G ) |
|
3 | trlsegvdeg.f | |- ( ph -> Fun I ) |
|
4 | trlsegvdeg.n | |- ( ph -> N e. ( 0 ..^ ( # ` F ) ) ) |
|
5 | trlsegvdeg.u | |- ( ph -> U e. V ) |
|
6 | trlsegvdeg.w | |- ( ph -> F ( Trails ` G ) P ) |
|
7 | trlsegvdeg.vx | |- ( ph -> ( Vtx ` X ) = V ) |
|
8 | trlsegvdeg.vy | |- ( ph -> ( Vtx ` Y ) = V ) |
|
9 | trlsegvdeg.vz | |- ( ph -> ( Vtx ` Z ) = V ) |
|
10 | trlsegvdeg.ix | |- ( ph -> ( iEdg ` X ) = ( I |` ( F " ( 0 ..^ N ) ) ) ) |
|
11 | trlsegvdeg.iy | |- ( ph -> ( iEdg ` Y ) = { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } ) |
|
12 | trlsegvdeg.iz | |- ( ph -> ( iEdg ` Z ) = ( I |` ( F " ( 0 ... N ) ) ) ) |
|
13 | 11 | dmeqd | |- ( ph -> dom ( iEdg ` Y ) = dom { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } ) |
14 | fvex | |- ( I ` ( F ` N ) ) e. _V |
|
15 | dmsnopg | |- ( ( I ` ( F ` N ) ) e. _V -> dom { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } = { ( F ` N ) } ) |
|
16 | 14 15 | mp1i | |- ( ph -> dom { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } = { ( F ` N ) } ) |
17 | 13 16 | eqtrd | |- ( ph -> dom ( iEdg ` Y ) = { ( F ` N ) } ) |