| Step |
Hyp |
Ref |
Expression |
| 1 |
|
trlsegvdeg.v |
|- V = ( Vtx ` G ) |
| 2 |
|
trlsegvdeg.i |
|- I = ( iEdg ` G ) |
| 3 |
|
trlsegvdeg.f |
|- ( ph -> Fun I ) |
| 4 |
|
trlsegvdeg.n |
|- ( ph -> N e. ( 0 ..^ ( # ` F ) ) ) |
| 5 |
|
trlsegvdeg.u |
|- ( ph -> U e. V ) |
| 6 |
|
trlsegvdeg.w |
|- ( ph -> F ( Trails ` G ) P ) |
| 7 |
|
trlsegvdeg.vx |
|- ( ph -> ( Vtx ` X ) = V ) |
| 8 |
|
trlsegvdeg.vy |
|- ( ph -> ( Vtx ` Y ) = V ) |
| 9 |
|
trlsegvdeg.vz |
|- ( ph -> ( Vtx ` Z ) = V ) |
| 10 |
|
trlsegvdeg.ix |
|- ( ph -> ( iEdg ` X ) = ( I |` ( F " ( 0 ..^ N ) ) ) ) |
| 11 |
|
trlsegvdeg.iy |
|- ( ph -> ( iEdg ` Y ) = { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } ) |
| 12 |
|
trlsegvdeg.iz |
|- ( ph -> ( iEdg ` Z ) = ( I |` ( F " ( 0 ... N ) ) ) ) |
| 13 |
|
eqid |
|- ( iEdg ` X ) = ( iEdg ` X ) |
| 14 |
|
eqid |
|- ( iEdg ` Y ) = ( iEdg ` Y ) |
| 15 |
|
eqid |
|- ( Vtx ` X ) = ( Vtx ` X ) |
| 16 |
8 7
|
eqtr4d |
|- ( ph -> ( Vtx ` Y ) = ( Vtx ` X ) ) |
| 17 |
9 7
|
eqtr4d |
|- ( ph -> ( Vtx ` Z ) = ( Vtx ` X ) ) |
| 18 |
1 2 3 4 5 6 7 8 9 10 11 12
|
trlsegvdeglem4 |
|- ( ph -> dom ( iEdg ` X ) = ( ( F " ( 0 ..^ N ) ) i^i dom I ) ) |
| 19 |
1 2 3 4 5 6 7 8 9 10 11 12
|
trlsegvdeglem5 |
|- ( ph -> dom ( iEdg ` Y ) = { ( F ` N ) } ) |
| 20 |
18 19
|
ineq12d |
|- ( ph -> ( dom ( iEdg ` X ) i^i dom ( iEdg ` Y ) ) = ( ( ( F " ( 0 ..^ N ) ) i^i dom I ) i^i { ( F ` N ) } ) ) |
| 21 |
|
fzonel |
|- -. N e. ( 0 ..^ N ) |
| 22 |
2
|
trlf1 |
|- ( F ( Trails ` G ) P -> F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I ) |
| 23 |
6 22
|
syl |
|- ( ph -> F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I ) |
| 24 |
|
elfzouz2 |
|- ( N e. ( 0 ..^ ( # ` F ) ) -> ( # ` F ) e. ( ZZ>= ` N ) ) |
| 25 |
|
fzoss2 |
|- ( ( # ` F ) e. ( ZZ>= ` N ) -> ( 0 ..^ N ) C_ ( 0 ..^ ( # ` F ) ) ) |
| 26 |
4 24 25
|
3syl |
|- ( ph -> ( 0 ..^ N ) C_ ( 0 ..^ ( # ` F ) ) ) |
| 27 |
|
f1elima |
|- ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I /\ N e. ( 0 ..^ ( # ` F ) ) /\ ( 0 ..^ N ) C_ ( 0 ..^ ( # ` F ) ) ) -> ( ( F ` N ) e. ( F " ( 0 ..^ N ) ) <-> N e. ( 0 ..^ N ) ) ) |
| 28 |
23 4 26 27
|
syl3anc |
|- ( ph -> ( ( F ` N ) e. ( F " ( 0 ..^ N ) ) <-> N e. ( 0 ..^ N ) ) ) |
| 29 |
21 28
|
mtbiri |
|- ( ph -> -. ( F ` N ) e. ( F " ( 0 ..^ N ) ) ) |
| 30 |
29
|
orcd |
|- ( ph -> ( -. ( F ` N ) e. ( F " ( 0 ..^ N ) ) \/ -. ( F ` N ) e. dom I ) ) |
| 31 |
|
ianor |
|- ( -. ( ( F ` N ) e. ( F " ( 0 ..^ N ) ) /\ ( F ` N ) e. dom I ) <-> ( -. ( F ` N ) e. ( F " ( 0 ..^ N ) ) \/ -. ( F ` N ) e. dom I ) ) |
| 32 |
|
elin |
|- ( ( F ` N ) e. ( ( F " ( 0 ..^ N ) ) i^i dom I ) <-> ( ( F ` N ) e. ( F " ( 0 ..^ N ) ) /\ ( F ` N ) e. dom I ) ) |
| 33 |
31 32
|
xchnxbir |
|- ( -. ( F ` N ) e. ( ( F " ( 0 ..^ N ) ) i^i dom I ) <-> ( -. ( F ` N ) e. ( F " ( 0 ..^ N ) ) \/ -. ( F ` N ) e. dom I ) ) |
| 34 |
30 33
|
sylibr |
|- ( ph -> -. ( F ` N ) e. ( ( F " ( 0 ..^ N ) ) i^i dom I ) ) |
| 35 |
|
disjsn |
|- ( ( ( ( F " ( 0 ..^ N ) ) i^i dom I ) i^i { ( F ` N ) } ) = (/) <-> -. ( F ` N ) e. ( ( F " ( 0 ..^ N ) ) i^i dom I ) ) |
| 36 |
34 35
|
sylibr |
|- ( ph -> ( ( ( F " ( 0 ..^ N ) ) i^i dom I ) i^i { ( F ` N ) } ) = (/) ) |
| 37 |
20 36
|
eqtrd |
|- ( ph -> ( dom ( iEdg ` X ) i^i dom ( iEdg ` Y ) ) = (/) ) |
| 38 |
1 2 3 4 5 6 7 8 9 10 11 12
|
trlsegvdeglem2 |
|- ( ph -> Fun ( iEdg ` X ) ) |
| 39 |
1 2 3 4 5 6 7 8 9 10 11 12
|
trlsegvdeglem3 |
|- ( ph -> Fun ( iEdg ` Y ) ) |
| 40 |
5 7
|
eleqtrrd |
|- ( ph -> U e. ( Vtx ` X ) ) |
| 41 |
|
f1f |
|- ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I -> F : ( 0 ..^ ( # ` F ) ) --> dom I ) |
| 42 |
6 22 41
|
3syl |
|- ( ph -> F : ( 0 ..^ ( # ` F ) ) --> dom I ) |
| 43 |
3 42 4
|
resunimafz0 |
|- ( ph -> ( I |` ( F " ( 0 ... N ) ) ) = ( ( I |` ( F " ( 0 ..^ N ) ) ) u. { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } ) ) |
| 44 |
10 11
|
uneq12d |
|- ( ph -> ( ( iEdg ` X ) u. ( iEdg ` Y ) ) = ( ( I |` ( F " ( 0 ..^ N ) ) ) u. { <. ( F ` N ) , ( I ` ( F ` N ) ) >. } ) ) |
| 45 |
43 12 44
|
3eqtr4d |
|- ( ph -> ( iEdg ` Z ) = ( ( iEdg ` X ) u. ( iEdg ` Y ) ) ) |
| 46 |
1 2 3 4 5 6 7 8 9 10 11 12
|
trlsegvdeglem6 |
|- ( ph -> dom ( iEdg ` X ) e. Fin ) |
| 47 |
1 2 3 4 5 6 7 8 9 10 11 12
|
trlsegvdeglem7 |
|- ( ph -> dom ( iEdg ` Y ) e. Fin ) |
| 48 |
13 14 15 16 17 37 38 39 40 45 46 47
|
vtxdfiun |
|- ( ph -> ( ( VtxDeg ` Z ) ` U ) = ( ( ( VtxDeg ` X ) ` U ) + ( ( VtxDeg ` Y ) ` U ) ) ) |