Metamath Proof Explorer


Theorem trsuc

Description: A set whose successor belongs to a transitive class also belongs. (Contributed by NM, 5-Sep-2003) (Proof shortened by Andrew Salmon, 12-Aug-2011)

Ref Expression
Assertion trsuc
|- ( ( Tr A /\ suc B e. A ) -> B e. A )

Proof

Step Hyp Ref Expression
1 trel
 |-  ( Tr A -> ( ( B e. suc B /\ suc B e. A ) -> B e. A ) )
2 sssucid
 |-  B C_ suc B
3 ssexg
 |-  ( ( B C_ suc B /\ suc B e. A ) -> B e. _V )
4 2 3 mpan
 |-  ( suc B e. A -> B e. _V )
5 sucidg
 |-  ( B e. _V -> B e. suc B )
6 4 5 syl
 |-  ( suc B e. A -> B e. suc B )
7 6 ancri
 |-  ( suc B e. A -> ( B e. suc B /\ suc B e. A ) )
8 1 7 impel
 |-  ( ( Tr A /\ suc B e. A ) -> B e. A )