Metamath Proof Explorer


Theorem trsuc

Description: A set whose successor belongs to a transitive class also belongs. (Contributed by NM, 5-Sep-2003) (Proof shortened by Andrew Salmon, 12-Aug-2011)

Ref Expression
Assertion trsuc TrAsucBABA

Proof

Step Hyp Ref Expression
1 trel TrABsucBsucBABA
2 sssucid BsucB
3 ssexg BsucBsucBABV
4 2 3 mpan sucBABV
5 sucidg BVBsucB
6 4 5 syl sucBABsucB
7 6 ancri sucBABsucBsucBA
8 1 7 impel TrAsucBABA