Metamath Proof Explorer


Theorem trsucss

Description: A member of the successor of a transitive class is a subclass of it. Lemma 1.13 of Schloeder p. 2. (Contributed by NM, 4-Oct-2003)

Ref Expression
Assertion trsucss TrABsucABA

Proof

Step Hyp Ref Expression
1 elsuci BsucABAB=A
2 trss TrABABA
3 eqimss B=ABA
4 3 a1i TrAB=ABA
5 2 4 jaod TrABAB=ABA
6 1 5 syl5 TrABsucABA