Metamath Proof Explorer


Theorem ts3an1

Description: A Tseitin axiom for triple logical conjunction, in deduction form. (Contributed by Giovanni Mascellani, 25-Mar-2018)

Ref Expression
Assertion ts3an1
|- ( th -> ( ( -. ( ph /\ ps ) \/ -. ch ) \/ ( ph /\ ps /\ ch ) ) )

Proof

Step Hyp Ref Expression
1 tsan1
 |-  ( th -> ( ( -. ( ph /\ ps ) \/ -. ch ) \/ ( ( ph /\ ps ) /\ ch ) ) )
2 df-3an
 |-  ( ( ph /\ ps /\ ch ) <-> ( ( ph /\ ps ) /\ ch ) )
3 2 orbi2i
 |-  ( ( ( -. ( ph /\ ps ) \/ -. ch ) \/ ( ph /\ ps /\ ch ) ) <-> ( ( -. ( ph /\ ps ) \/ -. ch ) \/ ( ( ph /\ ps ) /\ ch ) ) )
4 1 3 sylibr
 |-  ( th -> ( ( -. ( ph /\ ps ) \/ -. ch ) \/ ( ph /\ ps /\ ch ) ) )