Description: A Tseitin axiom for triple logical conjunction, in deduction form. (Contributed by Giovanni Mascellani, 25-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ts3an1 | |- ( th -> ( ( -. ( ph /\ ps ) \/ -. ch ) \/ ( ph /\ ps /\ ch ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | tsan1 | |- ( th -> ( ( -. ( ph /\ ps ) \/ -. ch ) \/ ( ( ph /\ ps ) /\ ch ) ) ) | |
| 2 | df-3an | |- ( ( ph /\ ps /\ ch ) <-> ( ( ph /\ ps ) /\ ch ) ) | |
| 3 | 2 | orbi2i | |- ( ( ( -. ( ph /\ ps ) \/ -. ch ) \/ ( ph /\ ps /\ ch ) ) <-> ( ( -. ( ph /\ ps ) \/ -. ch ) \/ ( ( ph /\ ps ) /\ ch ) ) ) | 
| 4 | 1 3 | sylibr | |- ( th -> ( ( -. ( ph /\ ps ) \/ -. ch ) \/ ( ph /\ ps /\ ch ) ) ) |