Description: A Tseitin axiom for triple logical conjunction, in deduction form. (Contributed by Giovanni Mascellani, 25-Mar-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | ts3an2 | |- ( th -> ( ( ph /\ ps ) \/ -. ( ph /\ ps /\ ch ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tsan2 | |- ( th -> ( ( ph /\ ps ) \/ -. ( ( ph /\ ps ) /\ ch ) ) ) |
|
2 | df-3an | |- ( ( ph /\ ps /\ ch ) <-> ( ( ph /\ ps ) /\ ch ) ) |
|
3 | 2 | notbii | |- ( -. ( ph /\ ps /\ ch ) <-> -. ( ( ph /\ ps ) /\ ch ) ) |
4 | 3 | orbi2i | |- ( ( ( ph /\ ps ) \/ -. ( ph /\ ps /\ ch ) ) <-> ( ( ph /\ ps ) \/ -. ( ( ph /\ ps ) /\ ch ) ) ) |
5 | 1 4 | sylibr | |- ( th -> ( ( ph /\ ps ) \/ -. ( ph /\ ps /\ ch ) ) ) |