Metamath Proof Explorer


Theorem ts3an2

Description: A Tseitin axiom for triple logical conjunction, in deduction form. (Contributed by Giovanni Mascellani, 25-Mar-2018)

Ref Expression
Assertion ts3an2 ( 𝜃 → ( ( 𝜑𝜓 ) ∨ ¬ ( 𝜑𝜓𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 tsan2 ( 𝜃 → ( ( 𝜑𝜓 ) ∨ ¬ ( ( 𝜑𝜓 ) ∧ 𝜒 ) ) )
2 df-3an ( ( 𝜑𝜓𝜒 ) ↔ ( ( 𝜑𝜓 ) ∧ 𝜒 ) )
3 2 notbii ( ¬ ( 𝜑𝜓𝜒 ) ↔ ¬ ( ( 𝜑𝜓 ) ∧ 𝜒 ) )
4 3 orbi2i ( ( ( 𝜑𝜓 ) ∨ ¬ ( 𝜑𝜓𝜒 ) ) ↔ ( ( 𝜑𝜓 ) ∨ ¬ ( ( 𝜑𝜓 ) ∧ 𝜒 ) ) )
5 1 4 sylibr ( 𝜃 → ( ( 𝜑𝜓 ) ∨ ¬ ( 𝜑𝜓𝜒 ) ) )