Description: A Tseitin axiom for triple logical conjunction, in deduction form. (Contributed by Giovanni Mascellani, 25-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ts3an2 | ⊢ ( 𝜃 → ( ( 𝜑 ∧ 𝜓 ) ∨ ¬ ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | tsan2 | ⊢ ( 𝜃 → ( ( 𝜑 ∧ 𝜓 ) ∨ ¬ ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ) ) | |
| 2 | df-3an | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ) | |
| 3 | 2 | notbii | ⊢ ( ¬ ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ¬ ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ) | 
| 4 | 3 | orbi2i | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ¬ ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ¬ ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ) ) | 
| 5 | 1 4 | sylibr | ⊢ ( 𝜃 → ( ( 𝜑 ∧ 𝜓 ) ∨ ¬ ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ) ) |