Metamath Proof Explorer


Theorem tskmid

Description: The set A is an element of the smallest Tarski class that contains A . CLASSES1 th. 5. (Contributed by FL, 30-Dec-2010) (Proof shortened by Mario Carneiro, 21-Sep-2014)

Ref Expression
Assertion tskmid
|- ( A e. V -> A e. ( tarskiMap ` A ) )

Proof

Step Hyp Ref Expression
1 id
 |-  ( A e. x -> A e. x )
2 1 rgenw
 |-  A. x e. Tarski ( A e. x -> A e. x )
3 elintrabg
 |-  ( A e. V -> ( A e. |^| { x e. Tarski | A e. x } <-> A. x e. Tarski ( A e. x -> A e. x ) ) )
4 2 3 mpbiri
 |-  ( A e. V -> A e. |^| { x e. Tarski | A e. x } )
5 tskmval
 |-  ( A e. V -> ( tarskiMap ` A ) = |^| { x e. Tarski | A e. x } )
6 4 5 eleqtrrd
 |-  ( A e. V -> A e. ( tarskiMap ` A ) )