Description: The set A is an element of the smallest Tarski class that contains A . CLASSES1 th. 5. (Contributed by FL, 30-Dec-2010) (Proof shortened by Mario Carneiro, 21-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | tskmid | |- ( A e. V -> A e. ( tarskiMap ` A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id | |- ( A e. x -> A e. x ) |
|
2 | 1 | rgenw | |- A. x e. Tarski ( A e. x -> A e. x ) |
3 | elintrabg | |- ( A e. V -> ( A e. |^| { x e. Tarski | A e. x } <-> A. x e. Tarski ( A e. x -> A e. x ) ) ) |
|
4 | 2 3 | mpbiri | |- ( A e. V -> A e. |^| { x e. Tarski | A e. x } ) |
5 | tskmval | |- ( A e. V -> ( tarskiMap ` A ) = |^| { x e. Tarski | A e. x } ) |
|
6 | 4 5 | eleqtrrd | |- ( A e. V -> A e. ( tarskiMap ` A ) ) |