Metamath Proof Explorer


Theorem tskmid

Description: The set A is an element of the smallest Tarski class that contains A . CLASSES1 th. 5. (Contributed by FL, 30-Dec-2010) (Proof shortened by Mario Carneiro, 21-Sep-2014)

Ref Expression
Assertion tskmid ( 𝐴𝑉𝐴 ∈ ( tarskiMap ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 id ( 𝐴𝑥𝐴𝑥 )
2 1 rgenw 𝑥 ∈ Tarski ( 𝐴𝑥𝐴𝑥 )
3 elintrabg ( 𝐴𝑉 → ( 𝐴 { 𝑥 ∈ Tarski ∣ 𝐴𝑥 } ↔ ∀ 𝑥 ∈ Tarski ( 𝐴𝑥𝐴𝑥 ) ) )
4 2 3 mpbiri ( 𝐴𝑉𝐴 { 𝑥 ∈ Tarski ∣ 𝐴𝑥 } )
5 tskmval ( 𝐴𝑉 → ( tarskiMap ‘ 𝐴 ) = { 𝑥 ∈ Tarski ∣ 𝐴𝑥 } )
6 4 5 eleqtrrd ( 𝐴𝑉𝐴 ∈ ( tarskiMap ‘ 𝐴 ) )