| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tskmval | ⊢ ( 𝐴  ∈  V  →  ( tarskiMap ‘ 𝐴 )  =  ∩  { 𝑥  ∈  Tarski  ∣  𝐴  ∈  𝑥 } ) | 
						
							| 2 |  | ssrab2 | ⊢ { 𝑥  ∈  Tarski  ∣  𝐴  ∈  𝑥 }  ⊆  Tarski | 
						
							| 3 |  | id | ⊢ ( 𝐴  ∈  V  →  𝐴  ∈  V ) | 
						
							| 4 |  | grothtsk | ⊢ ∪  Tarski  =  V | 
						
							| 5 | 3 4 | eleqtrrdi | ⊢ ( 𝐴  ∈  V  →  𝐴  ∈  ∪  Tarski ) | 
						
							| 6 |  | eluni2 | ⊢ ( 𝐴  ∈  ∪  Tarski  ↔  ∃ 𝑥  ∈  Tarski 𝐴  ∈  𝑥 ) | 
						
							| 7 | 5 6 | sylib | ⊢ ( 𝐴  ∈  V  →  ∃ 𝑥  ∈  Tarski 𝐴  ∈  𝑥 ) | 
						
							| 8 |  | rabn0 | ⊢ ( { 𝑥  ∈  Tarski  ∣  𝐴  ∈  𝑥 }  ≠  ∅  ↔  ∃ 𝑥  ∈  Tarski 𝐴  ∈  𝑥 ) | 
						
							| 9 | 7 8 | sylibr | ⊢ ( 𝐴  ∈  V  →  { 𝑥  ∈  Tarski  ∣  𝐴  ∈  𝑥 }  ≠  ∅ ) | 
						
							| 10 |  | inttsk | ⊢ ( ( { 𝑥  ∈  Tarski  ∣  𝐴  ∈  𝑥 }  ⊆  Tarski  ∧  { 𝑥  ∈  Tarski  ∣  𝐴  ∈  𝑥 }  ≠  ∅ )  →  ∩  { 𝑥  ∈  Tarski  ∣  𝐴  ∈  𝑥 }  ∈  Tarski ) | 
						
							| 11 | 2 9 10 | sylancr | ⊢ ( 𝐴  ∈  V  →  ∩  { 𝑥  ∈  Tarski  ∣  𝐴  ∈  𝑥 }  ∈  Tarski ) | 
						
							| 12 | 1 11 | eqeltrd | ⊢ ( 𝐴  ∈  V  →  ( tarskiMap ‘ 𝐴 )  ∈  Tarski ) | 
						
							| 13 |  | fvprc | ⊢ ( ¬  𝐴  ∈  V  →  ( tarskiMap ‘ 𝐴 )  =  ∅ ) | 
						
							| 14 |  | 0tsk | ⊢ ∅  ∈  Tarski | 
						
							| 15 | 13 14 | eqeltrdi | ⊢ ( ¬  𝐴  ∈  V  →  ( tarskiMap ‘ 𝐴 )  ∈  Tarski ) | 
						
							| 16 | 12 15 | pm2.61i | ⊢ ( tarskiMap ‘ 𝐴 )  ∈  Tarski |