Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) |
2 |
|
grothtsk |
⊢ ∪ Tarski = V |
3 |
1 2
|
eleqtrrdi |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ ∪ Tarski ) |
4 |
|
eluni2 |
⊢ ( 𝐴 ∈ ∪ Tarski ↔ ∃ 𝑥 ∈ Tarski 𝐴 ∈ 𝑥 ) |
5 |
3 4
|
sylib |
⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑥 ∈ Tarski 𝐴 ∈ 𝑥 ) |
6 |
|
intexrab |
⊢ ( ∃ 𝑥 ∈ Tarski 𝐴 ∈ 𝑥 ↔ ∩ { 𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥 } ∈ V ) |
7 |
5 6
|
sylib |
⊢ ( 𝐴 ∈ 𝑉 → ∩ { 𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥 } ∈ V ) |
8 |
|
eleq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥 ) ) |
9 |
8
|
rabbidv |
⊢ ( 𝑦 = 𝐴 → { 𝑥 ∈ Tarski ∣ 𝑦 ∈ 𝑥 } = { 𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥 } ) |
10 |
9
|
inteqd |
⊢ ( 𝑦 = 𝐴 → ∩ { 𝑥 ∈ Tarski ∣ 𝑦 ∈ 𝑥 } = ∩ { 𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥 } ) |
11 |
|
df-tskm |
⊢ tarskiMap = ( 𝑦 ∈ V ↦ ∩ { 𝑥 ∈ Tarski ∣ 𝑦 ∈ 𝑥 } ) |
12 |
10 11
|
fvmptg |
⊢ ( ( 𝐴 ∈ V ∧ ∩ { 𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥 } ∈ V ) → ( tarskiMap ‘ 𝐴 ) = ∩ { 𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥 } ) |
13 |
1 7 12
|
syl2anc |
⊢ ( 𝐴 ∈ 𝑉 → ( tarskiMap ‘ 𝐴 ) = ∩ { 𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥 } ) |