Metamath Proof Explorer


Theorem tskmval

Description: Value of our tarski map. (Contributed by FL, 30-Dec-2010) (Revised by Mario Carneiro, 20-Sep-2014)

Ref Expression
Assertion tskmval ( 𝐴𝑉 → ( tarskiMap ‘ 𝐴 ) = { 𝑥 ∈ Tarski ∣ 𝐴𝑥 } )

Proof

Step Hyp Ref Expression
1 elex ( 𝐴𝑉𝐴 ∈ V )
2 grothtsk Tarski = V
3 1 2 eleqtrrdi ( 𝐴𝑉𝐴 Tarski )
4 eluni2 ( 𝐴 Tarski ↔ ∃ 𝑥 ∈ Tarski 𝐴𝑥 )
5 3 4 sylib ( 𝐴𝑉 → ∃ 𝑥 ∈ Tarski 𝐴𝑥 )
6 intexrab ( ∃ 𝑥 ∈ Tarski 𝐴𝑥 { 𝑥 ∈ Tarski ∣ 𝐴𝑥 } ∈ V )
7 5 6 sylib ( 𝐴𝑉 { 𝑥 ∈ Tarski ∣ 𝐴𝑥 } ∈ V )
8 eleq1 ( 𝑦 = 𝐴 → ( 𝑦𝑥𝐴𝑥 ) )
9 8 rabbidv ( 𝑦 = 𝐴 → { 𝑥 ∈ Tarski ∣ 𝑦𝑥 } = { 𝑥 ∈ Tarski ∣ 𝐴𝑥 } )
10 9 inteqd ( 𝑦 = 𝐴 { 𝑥 ∈ Tarski ∣ 𝑦𝑥 } = { 𝑥 ∈ Tarski ∣ 𝐴𝑥 } )
11 df-tskm tarskiMap = ( 𝑦 ∈ V ↦ { 𝑥 ∈ Tarski ∣ 𝑦𝑥 } )
12 10 11 fvmptg ( ( 𝐴 ∈ V ∧ { 𝑥 ∈ Tarski ∣ 𝐴𝑥 } ∈ V ) → ( tarskiMap ‘ 𝐴 ) = { 𝑥 ∈ Tarski ∣ 𝐴𝑥 } )
13 1 7 12 syl2anc ( 𝐴𝑉 → ( tarskiMap ‘ 𝐴 ) = { 𝑥 ∈ Tarski ∣ 𝐴𝑥 } )