Metamath Proof Explorer
		
		
		
		Description:  A function that maps a set x to the smallest Tarski class that
       contains the set.  (Contributed by FL, 30-Dec-2010)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | df-tskm | ⊢  tarskiMap  =  ( 𝑥  ∈  V  ↦  ∩  { 𝑦  ∈  Tarski  ∣  𝑥  ∈  𝑦 } ) | 
			
		
		
			
				Detailed syntax breakdown
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 0 |  | ctskm | ⊢ tarskiMap | 
						
							| 1 |  | vx | ⊢ 𝑥 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 |  | vy | ⊢ 𝑦 | 
						
							| 4 |  | ctsk | ⊢ Tarski | 
						
							| 5 | 1 | cv | ⊢ 𝑥 | 
						
							| 6 | 3 | cv | ⊢ 𝑦 | 
						
							| 7 | 5 6 | wcel | ⊢ 𝑥  ∈  𝑦 | 
						
							| 8 | 7 3 4 | crab | ⊢ { 𝑦  ∈  Tarski  ∣  𝑥  ∈  𝑦 } | 
						
							| 9 | 8 | cint | ⊢ ∩  { 𝑦  ∈  Tarski  ∣  𝑥  ∈  𝑦 } | 
						
							| 10 | 1 2 9 | cmpt | ⊢ ( 𝑥  ∈  V  ↦  ∩  { 𝑦  ∈  Tarski  ∣  𝑥  ∈  𝑦 } ) | 
						
							| 11 | 0 10 | wceq | ⊢ tarskiMap  =  ( 𝑥  ∈  V  ↦  ∩  { 𝑦  ∈  Tarski  ∣  𝑥  ∈  𝑦 } ) |