Metamath Proof Explorer
Description: A function that maps a set x to the smallest Tarski class that
contains the set. (Contributed by FL, 30-Dec-2010)
|
|
Ref |
Expression |
|
Assertion |
df-tskm |
⊢ tarskiMap = ( 𝑥 ∈ V ↦ ∩ { 𝑦 ∈ Tarski ∣ 𝑥 ∈ 𝑦 } ) |
Detailed syntax breakdown
| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ctskm |
⊢ tarskiMap |
| 1 |
|
vx |
⊢ 𝑥 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vy |
⊢ 𝑦 |
| 4 |
|
ctsk |
⊢ Tarski |
| 5 |
1
|
cv |
⊢ 𝑥 |
| 6 |
3
|
cv |
⊢ 𝑦 |
| 7 |
5 6
|
wcel |
⊢ 𝑥 ∈ 𝑦 |
| 8 |
7 3 4
|
crab |
⊢ { 𝑦 ∈ Tarski ∣ 𝑥 ∈ 𝑦 } |
| 9 |
8
|
cint |
⊢ ∩ { 𝑦 ∈ Tarski ∣ 𝑥 ∈ 𝑦 } |
| 10 |
1 2 9
|
cmpt |
⊢ ( 𝑥 ∈ V ↦ ∩ { 𝑦 ∈ Tarski ∣ 𝑥 ∈ 𝑦 } ) |
| 11 |
0 10
|
wceq |
⊢ tarskiMap = ( 𝑥 ∈ V ↦ ∩ { 𝑦 ∈ Tarski ∣ 𝑥 ∈ 𝑦 } ) |