Metamath Proof Explorer


Definition df-tskm

Description: A function that maps a set x to the smallest Tarski class that contains the set. (Contributed by FL, 30-Dec-2010)

Ref Expression
Assertion df-tskm tarskiMap = ( 𝑥 ∈ V ↦ { 𝑦 ∈ Tarski ∣ 𝑥𝑦 } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctskm tarskiMap
1 vx 𝑥
2 cvv V
3 vy 𝑦
4 ctsk Tarski
5 1 cv 𝑥
6 3 cv 𝑦
7 5 6 wcel 𝑥𝑦
8 7 3 4 crab { 𝑦 ∈ Tarski ∣ 𝑥𝑦 }
9 8 cint { 𝑦 ∈ Tarski ∣ 𝑥𝑦 }
10 1 2 9 cmpt ( 𝑥 ∈ V ↦ { 𝑦 ∈ Tarski ∣ 𝑥𝑦 } )
11 0 10 wceq tarskiMap = ( 𝑥 ∈ V ↦ { 𝑦 ∈ Tarski ∣ 𝑥𝑦 } )