Metamath Proof Explorer


Definition df-tskm

Description: A function that maps a set x to the smallest Tarski class that contains the set. (Contributed by FL, 30-Dec-2010)

Ref Expression
Assertion df-tskm
|- tarskiMap = ( x e. _V |-> |^| { y e. Tarski | x e. y } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctskm
 |-  tarskiMap
1 vx
 |-  x
2 cvv
 |-  _V
3 vy
 |-  y
4 ctsk
 |-  Tarski
5 1 cv
 |-  x
6 3 cv
 |-  y
7 5 6 wcel
 |-  x e. y
8 7 3 4 crab
 |-  { y e. Tarski | x e. y }
9 8 cint
 |-  |^| { y e. Tarski | x e. y }
10 1 2 9 cmpt
 |-  ( x e. _V |-> |^| { y e. Tarski | x e. y } )
11 0 10 wceq
 |-  tarskiMap = ( x e. _V |-> |^| { y e. Tarski | x e. y } )