| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tskmval | ⊢ ( 𝐴  ∈  𝑉  →  ( tarskiMap ‘ 𝐴 )  =  ∩  { 𝑥  ∈  Tarski  ∣  𝐴  ∈  𝑥 } ) | 
						
							| 2 |  | df-rab | ⊢ { 𝑥  ∈  Tarski  ∣  𝐴  ∈  𝑥 }  =  { 𝑥  ∣  ( 𝑥  ∈  Tarski  ∧  𝐴  ∈  𝑥 ) } | 
						
							| 3 | 2 | inteqi | ⊢ ∩  { 𝑥  ∈  Tarski  ∣  𝐴  ∈  𝑥 }  =  ∩  { 𝑥  ∣  ( 𝑥  ∈  Tarski  ∧  𝐴  ∈  𝑥 ) } | 
						
							| 4 | 1 3 | eqtrdi | ⊢ ( 𝐴  ∈  𝑉  →  ( tarskiMap ‘ 𝐴 )  =  ∩  { 𝑥  ∣  ( 𝑥  ∈  Tarski  ∧  𝐴  ∈  𝑥 ) } ) | 
						
							| 5 | 4 | sseq2d | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝐵  ⊆  ( tarskiMap ‘ 𝐴 )  ↔  𝐵  ⊆  ∩  { 𝑥  ∣  ( 𝑥  ∈  Tarski  ∧  𝐴  ∈  𝑥 ) } ) ) | 
						
							| 6 |  | impexp | ⊢ ( ( ( 𝑥  ∈  Tarski  ∧  𝐴  ∈  𝑥 )  →  𝐵  ⊆  𝑥 )  ↔  ( 𝑥  ∈  Tarski  →  ( 𝐴  ∈  𝑥  →  𝐵  ⊆  𝑥 ) ) ) | 
						
							| 7 | 6 | albii | ⊢ ( ∀ 𝑥 ( ( 𝑥  ∈  Tarski  ∧  𝐴  ∈  𝑥 )  →  𝐵  ⊆  𝑥 )  ↔  ∀ 𝑥 ( 𝑥  ∈  Tarski  →  ( 𝐴  ∈  𝑥  →  𝐵  ⊆  𝑥 ) ) ) | 
						
							| 8 |  | ssintab | ⊢ ( 𝐵  ⊆  ∩  { 𝑥  ∣  ( 𝑥  ∈  Tarski  ∧  𝐴  ∈  𝑥 ) }  ↔  ∀ 𝑥 ( ( 𝑥  ∈  Tarski  ∧  𝐴  ∈  𝑥 )  →  𝐵  ⊆  𝑥 ) ) | 
						
							| 9 |  | df-ral | ⊢ ( ∀ 𝑥  ∈  Tarski ( 𝐴  ∈  𝑥  →  𝐵  ⊆  𝑥 )  ↔  ∀ 𝑥 ( 𝑥  ∈  Tarski  →  ( 𝐴  ∈  𝑥  →  𝐵  ⊆  𝑥 ) ) ) | 
						
							| 10 | 7 8 9 | 3bitr4i | ⊢ ( 𝐵  ⊆  ∩  { 𝑥  ∣  ( 𝑥  ∈  Tarski  ∧  𝐴  ∈  𝑥 ) }  ↔  ∀ 𝑥  ∈  Tarski ( 𝐴  ∈  𝑥  →  𝐵  ⊆  𝑥 ) ) | 
						
							| 11 | 5 10 | bitrdi | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝐵  ⊆  ( tarskiMap ‘ 𝐴 )  ↔  ∀ 𝑥  ∈  Tarski ( 𝐴  ∈  𝑥  →  𝐵  ⊆  𝑥 ) ) ) |