Metamath Proof Explorer


Theorem sstskm

Description: Being a part of ( tarskiMapA ) . (Contributed by FL, 17-Apr-2011) (Proof shortened by Mario Carneiro, 20-Sep-2014)

Ref Expression
Assertion sstskm ( 𝐴𝑉 → ( 𝐵 ⊆ ( tarskiMap ‘ 𝐴 ) ↔ ∀ 𝑥 ∈ Tarski ( 𝐴𝑥𝐵𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 tskmval ( 𝐴𝑉 → ( tarskiMap ‘ 𝐴 ) = { 𝑥 ∈ Tarski ∣ 𝐴𝑥 } )
2 df-rab { 𝑥 ∈ Tarski ∣ 𝐴𝑥 } = { 𝑥 ∣ ( 𝑥 ∈ Tarski ∧ 𝐴𝑥 ) }
3 2 inteqi { 𝑥 ∈ Tarski ∣ 𝐴𝑥 } = { 𝑥 ∣ ( 𝑥 ∈ Tarski ∧ 𝐴𝑥 ) }
4 1 3 eqtrdi ( 𝐴𝑉 → ( tarskiMap ‘ 𝐴 ) = { 𝑥 ∣ ( 𝑥 ∈ Tarski ∧ 𝐴𝑥 ) } )
5 4 sseq2d ( 𝐴𝑉 → ( 𝐵 ⊆ ( tarskiMap ‘ 𝐴 ) ↔ 𝐵 { 𝑥 ∣ ( 𝑥 ∈ Tarski ∧ 𝐴𝑥 ) } ) )
6 impexp ( ( ( 𝑥 ∈ Tarski ∧ 𝐴𝑥 ) → 𝐵𝑥 ) ↔ ( 𝑥 ∈ Tarski → ( 𝐴𝑥𝐵𝑥 ) ) )
7 6 albii ( ∀ 𝑥 ( ( 𝑥 ∈ Tarski ∧ 𝐴𝑥 ) → 𝐵𝑥 ) ↔ ∀ 𝑥 ( 𝑥 ∈ Tarski → ( 𝐴𝑥𝐵𝑥 ) ) )
8 ssintab ( 𝐵 { 𝑥 ∣ ( 𝑥 ∈ Tarski ∧ 𝐴𝑥 ) } ↔ ∀ 𝑥 ( ( 𝑥 ∈ Tarski ∧ 𝐴𝑥 ) → 𝐵𝑥 ) )
9 df-ral ( ∀ 𝑥 ∈ Tarski ( 𝐴𝑥𝐵𝑥 ) ↔ ∀ 𝑥 ( 𝑥 ∈ Tarski → ( 𝐴𝑥𝐵𝑥 ) ) )
10 7 8 9 3bitr4i ( 𝐵 { 𝑥 ∣ ( 𝑥 ∈ Tarski ∧ 𝐴𝑥 ) } ↔ ∀ 𝑥 ∈ Tarski ( 𝐴𝑥𝐵𝑥 ) )
11 5 10 bitrdi ( 𝐴𝑉 → ( 𝐵 ⊆ ( tarskiMap ‘ 𝐴 ) ↔ ∀ 𝑥 ∈ Tarski ( 𝐴𝑥𝐵𝑥 ) ) )