Step |
Hyp |
Ref |
Expression |
1 |
|
tskmval |
⊢ ( 𝐴 ∈ 𝑉 → ( tarskiMap ‘ 𝐴 ) = ∩ { 𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥 } ) |
2 |
|
df-rab |
⊢ { 𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥 } = { 𝑥 ∣ ( 𝑥 ∈ Tarski ∧ 𝐴 ∈ 𝑥 ) } |
3 |
2
|
inteqi |
⊢ ∩ { 𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥 } = ∩ { 𝑥 ∣ ( 𝑥 ∈ Tarski ∧ 𝐴 ∈ 𝑥 ) } |
4 |
1 3
|
eqtrdi |
⊢ ( 𝐴 ∈ 𝑉 → ( tarskiMap ‘ 𝐴 ) = ∩ { 𝑥 ∣ ( 𝑥 ∈ Tarski ∧ 𝐴 ∈ 𝑥 ) } ) |
5 |
4
|
sseq2d |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐵 ⊆ ( tarskiMap ‘ 𝐴 ) ↔ 𝐵 ⊆ ∩ { 𝑥 ∣ ( 𝑥 ∈ Tarski ∧ 𝐴 ∈ 𝑥 ) } ) ) |
6 |
|
impexp |
⊢ ( ( ( 𝑥 ∈ Tarski ∧ 𝐴 ∈ 𝑥 ) → 𝐵 ⊆ 𝑥 ) ↔ ( 𝑥 ∈ Tarski → ( 𝐴 ∈ 𝑥 → 𝐵 ⊆ 𝑥 ) ) ) |
7 |
6
|
albii |
⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ Tarski ∧ 𝐴 ∈ 𝑥 ) → 𝐵 ⊆ 𝑥 ) ↔ ∀ 𝑥 ( 𝑥 ∈ Tarski → ( 𝐴 ∈ 𝑥 → 𝐵 ⊆ 𝑥 ) ) ) |
8 |
|
ssintab |
⊢ ( 𝐵 ⊆ ∩ { 𝑥 ∣ ( 𝑥 ∈ Tarski ∧ 𝐴 ∈ 𝑥 ) } ↔ ∀ 𝑥 ( ( 𝑥 ∈ Tarski ∧ 𝐴 ∈ 𝑥 ) → 𝐵 ⊆ 𝑥 ) ) |
9 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ Tarski ( 𝐴 ∈ 𝑥 → 𝐵 ⊆ 𝑥 ) ↔ ∀ 𝑥 ( 𝑥 ∈ Tarski → ( 𝐴 ∈ 𝑥 → 𝐵 ⊆ 𝑥 ) ) ) |
10 |
7 8 9
|
3bitr4i |
⊢ ( 𝐵 ⊆ ∩ { 𝑥 ∣ ( 𝑥 ∈ Tarski ∧ 𝐴 ∈ 𝑥 ) } ↔ ∀ 𝑥 ∈ Tarski ( 𝐴 ∈ 𝑥 → 𝐵 ⊆ 𝑥 ) ) |
11 |
5 10
|
bitrdi |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐵 ⊆ ( tarskiMap ‘ 𝐴 ) ↔ ∀ 𝑥 ∈ Tarski ( 𝐴 ∈ 𝑥 → 𝐵 ⊆ 𝑥 ) ) ) |