Metamath Proof Explorer


Theorem tskmcl

Description: A Tarski class that contains A is a Tarski class. (Contributed by FL, 17-Apr-2011) (Proof shortened by Mario Carneiro, 21-Sep-2014)

Ref Expression
Assertion tskmcl tarskiMap A Tarski

Proof

Step Hyp Ref Expression
1 tskmval A V tarskiMap A = x Tarski | A x
2 ssrab2 x Tarski | A x Tarski
3 id A V A V
4 grothtsk Tarski = V
5 3 4 eleqtrrdi A V A Tarski
6 eluni2 A Tarski x Tarski A x
7 5 6 sylib A V x Tarski A x
8 rabn0 x Tarski | A x x Tarski A x
9 7 8 sylibr A V x Tarski | A x
10 inttsk x Tarski | A x Tarski x Tarski | A x x Tarski | A x Tarski
11 2 9 10 sylancr A V x Tarski | A x Tarski
12 1 11 eqeltrd A V tarskiMap A Tarski
13 fvprc ¬ A V tarskiMap A =
14 0tsk Tarski
15 13 14 eqeltrdi ¬ A V tarskiMap A Tarski
16 12 15 pm2.61i tarskiMap A Tarski