Description: The intersection of a collection of Tarski classes is a Tarski class. (Contributed by FL, 17-Apr-2011) (Proof shortened by Mario Carneiro, 20-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | inttsk | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll | |
|
2 | 1 | sselda | |
3 | elinti | |
|
4 | 3 | imp | |
5 | 4 | adantll | |
6 | tskpwss | |
|
7 | 2 5 6 | syl2anc | |
8 | 7 | ralrimiva | |
9 | ssint | |
|
10 | 8 9 | sylibr | |
11 | tskpw | |
|
12 | 2 5 11 | syl2anc | |
13 | 12 | ralrimiva | |
14 | vpwex | |
|
15 | 14 | elint2 | |
16 | 13 15 | sylibr | |
17 | 10 16 | jca | |
18 | 17 | ralrimiva | |
19 | elpwi | |
|
20 | rexnal | |
|
21 | simpr | |
|
22 | intex | |
|
23 | 21 22 | sylib | |
24 | 23 | ad2antrr | |
25 | simplr | |
|
26 | ssdomg | |
|
27 | 24 25 26 | sylc | |
28 | vex | |
|
29 | intss1 | |
|
30 | 29 | ad2antrl | |
31 | ssdomg | |
|
32 | 28 30 31 | mpsyl | |
33 | simprr | |
|
34 | simplll | |
|
35 | simprl | |
|
36 | 34 35 | sseldd | |
37 | 25 30 | sstrd | |
38 | tsken | |
|
39 | 36 37 38 | syl2anc | |
40 | 39 | ord | |
41 | 33 40 | mt3d | |
42 | 41 | ensymd | |
43 | domentr | |
|
44 | 32 42 43 | syl2anc | |
45 | sbth | |
|
46 | 27 44 45 | syl2anc | |
47 | 46 | rexlimdvaa | |
48 | 20 47 | biimtrrid | |
49 | 48 | con1d | |
50 | vex | |
|
51 | 50 | elint2 | |
52 | 49 51 | imbitrrdi | |
53 | 52 | orrd | |
54 | 19 53 | sylan2 | |
55 | 54 | ralrimiva | |
56 | eltsk2g | |
|
57 | 23 56 | syl | |
58 | 18 55 57 | mpbir2and | |