Metamath Proof Explorer


Theorem ttgplusgOLD

Description: Obsolete proof of ttgplusg as of 29-Oct-2024. The addition operation of a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ttgval.n
|- G = ( toTG ` H )
ttgplusg.1
|- .+ = ( +g ` H )
Assertion ttgplusgOLD
|- .+ = ( +g ` G )

Proof

Step Hyp Ref Expression
1 ttgval.n
 |-  G = ( toTG ` H )
2 ttgplusg.1
 |-  .+ = ( +g ` H )
3 df-plusg
 |-  +g = Slot 2
4 2nn
 |-  2 e. NN
5 1nn
 |-  1 e. NN
6 6nn0
 |-  6 e. NN0
7 2nn0
 |-  2 e. NN0
8 2lt10
 |-  2 < ; 1 0
9 5 6 7 8 declti
 |-  2 < ; 1 6
10 1 3 4 9 ttglemOLD
 |-  ( +g ` H ) = ( +g ` G )
11 2 10 eqtri
 |-  .+ = ( +g ` G )