Description: The subtraction operation of a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ttgval.n | |- G = ( toTG ` H ) | |
| ttgsub.1 | |- .- = ( -g ` H ) | ||
| Assertion | ttgsub | |- .- = ( -g ` G ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ttgval.n | |- G = ( toTG ` H ) | |
| 2 | ttgsub.1 | |- .- = ( -g ` H ) | |
| 3 | eqid | |- ( Base ` H ) = ( Base ` H ) | |
| 4 | 1 3 | ttgbas | |- ( Base ` H ) = ( Base ` G ) | 
| 5 | 4 | a1i | |- ( T. -> ( Base ` H ) = ( Base ` G ) ) | 
| 6 | eqid | |- ( +g ` H ) = ( +g ` H ) | |
| 7 | 1 6 | ttgplusg | |- ( +g ` H ) = ( +g ` G ) | 
| 8 | 7 | a1i | |- ( T. -> ( +g ` H ) = ( +g ` G ) ) | 
| 9 | 5 8 | grpsubpropd | |- ( T. -> ( -g ` H ) = ( -g ` G ) ) | 
| 10 | 9 | mptru | |- ( -g ` H ) = ( -g ` G ) | 
| 11 | 2 10 | eqtri | |- .- = ( -g ` G ) |