Description: The subtraction operation of a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ttgval.n | ⊢ 𝐺 = ( toTG ‘ 𝐻 ) | |
| ttgsub.1 | ⊢ − = ( -g ‘ 𝐻 ) | ||
| Assertion | ttgsub | ⊢ − = ( -g ‘ 𝐺 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ttgval.n | ⊢ 𝐺 = ( toTG ‘ 𝐻 ) | |
| 2 | ttgsub.1 | ⊢ − = ( -g ‘ 𝐻 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 4 | 1 3 | ttgbas | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐺 ) | 
| 5 | 4 | a1i | ⊢ ( ⊤ → ( Base ‘ 𝐻 ) = ( Base ‘ 𝐺 ) ) | 
| 6 | eqid | ⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) | |
| 7 | 1 6 | ttgplusg | ⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐺 ) | 
| 8 | 7 | a1i | ⊢ ( ⊤ → ( +g ‘ 𝐻 ) = ( +g ‘ 𝐺 ) ) | 
| 9 | 5 8 | grpsubpropd | ⊢ ( ⊤ → ( -g ‘ 𝐻 ) = ( -g ‘ 𝐺 ) ) | 
| 10 | 9 | mptru | ⊢ ( -g ‘ 𝐻 ) = ( -g ‘ 𝐺 ) | 
| 11 | 2 10 | eqtri | ⊢ − = ( -g ‘ 𝐺 ) |