Metamath Proof Explorer


Theorem ttgsub

Description: The subtraction operation of a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019)

Ref Expression
Hypotheses ttgval.n 𝐺 = ( toTG ‘ 𝐻 )
ttgsub.1 = ( -g𝐻 )
Assertion ttgsub = ( -g𝐺 )

Proof

Step Hyp Ref Expression
1 ttgval.n 𝐺 = ( toTG ‘ 𝐻 )
2 ttgsub.1 = ( -g𝐻 )
3 eqid ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 )
4 1 3 ttgbas ( Base ‘ 𝐻 ) = ( Base ‘ 𝐺 )
5 4 a1i ( ⊤ → ( Base ‘ 𝐻 ) = ( Base ‘ 𝐺 ) )
6 eqid ( +g𝐻 ) = ( +g𝐻 )
7 1 6 ttgplusg ( +g𝐻 ) = ( +g𝐺 )
8 7 a1i ( ⊤ → ( +g𝐻 ) = ( +g𝐺 ) )
9 5 8 grpsubpropd ( ⊤ → ( -g𝐻 ) = ( -g𝐺 ) )
10 9 mptru ( -g𝐻 ) = ( -g𝐺 )
11 2 10 eqtri = ( -g𝐺 )