Metamath Proof Explorer


Theorem ttgsub

Description: The subtraction operation of a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019)

Ref Expression
Hypotheses ttgval.n G = to𝒢 Tarski H
ttgsub.1 - ˙ = - H
Assertion ttgsub - ˙ = - G

Proof

Step Hyp Ref Expression
1 ttgval.n G = to𝒢 Tarski H
2 ttgsub.1 - ˙ = - H
3 eqid Base H = Base H
4 1 3 ttgbas Base H = Base G
5 4 a1i Base H = Base G
6 eqid + H = + H
7 1 6 ttgplusg + H = + G
8 7 a1i + H = + G
9 5 8 grpsubpropd - H = - G
10 9 mptru - H = - G
11 2 10 eqtri - ˙ = - G