Metamath Proof Explorer


Theorem ttgsub

Description: The subtraction operation of a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019)

Ref Expression
Hypotheses ttgval.n ⊒G=to𝒒Tarski⁑H
ttgsub.1 ⊒-Λ™=-H
Assertion ttgsub ⊒-Λ™=-G

Proof

Step Hyp Ref Expression
1 ttgval.n ⊒G=to𝒒Tarski⁑H
2 ttgsub.1 ⊒-Λ™=-H
3 eqid ⊒BaseH=BaseH
4 1 3 ttgbas ⊒BaseH=BaseG
5 4 a1i βŠ’βŠ€β†’BaseH=BaseG
6 eqid ⊒+H=+H
7 1 6 ttgplusg ⊒+H=+G
8 7 a1i βŠ’βŠ€β†’+H=+G
9 5 8 grpsubpropd βŠ’βŠ€β†’-H=-G
10 9 mptru ⊒-H=-G
11 2 10 eqtri ⊒-Λ™=-G