Metamath Proof Explorer


Theorem ttgplusg

Description: The addition operation of a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019) (Revised by AV, 29-Oct-2024)

Ref Expression
Hypotheses ttgval.n ⊒G=to𝒒Tarski⁑H
ttgplusg.1 ⊒+Λ™=+H
Assertion ttgplusg ⊒+Λ™=+G

Proof

Step Hyp Ref Expression
1 ttgval.n ⊒G=to𝒒Tarski⁑H
2 ttgplusg.1 ⊒+Λ™=+H
3 plusgid ⊒+𝑔=Slot+ndx
4 slotslnbpsd ⊒Line𝒒⁑ndxβ‰ Basendx∧Line𝒒⁑ndxβ‰ +ndx∧Line𝒒⁑ndxβ‰ β‹…ndx∧Line𝒒⁑ndxβ‰ dist⁑ndx
5 simplr ⊒Line𝒒⁑ndxβ‰ Basendx∧Line𝒒⁑ndxβ‰ +ndx∧Line𝒒⁑ndxβ‰ β‹…ndx∧Line𝒒⁑ndxβ‰ dist⁑ndxβ†’Line𝒒⁑ndxβ‰ +ndx
6 4 5 ax-mp ⊒Line𝒒⁑ndxβ‰ +ndx
7 6 necomi ⊒+ndxβ‰ Line𝒒⁑ndx
8 slotsinbpsd ⊒Itv⁑ndxβ‰ Basendx∧Itv⁑ndxβ‰ +ndx∧Itv⁑ndxβ‰ β‹…ndx∧Itv⁑ndxβ‰ dist⁑ndx
9 simplr ⊒Itv⁑ndxβ‰ Basendx∧Itv⁑ndxβ‰ +ndx∧Itv⁑ndxβ‰ β‹…ndx∧Itv⁑ndxβ‰ dist⁑ndxβ†’Itv⁑ndxβ‰ +ndx
10 8 9 ax-mp ⊒Itv⁑ndxβ‰ +ndx
11 10 necomi ⊒+ndxβ‰ Itv⁑ndx
12 1 3 7 11 ttglem ⊒+H=+G
13 2 12 eqtri ⊒+Λ™=+G