Metamath Proof Explorer


Theorem uhgr0e

Description: The empty graph, with vertices but no edges, is a hypergraph. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 25-Nov-2020)

Ref Expression
Hypotheses uhgr0e.g
|- ( ph -> G e. W )
uhgr0e.e
|- ( ph -> ( iEdg ` G ) = (/) )
Assertion uhgr0e
|- ( ph -> G e. UHGraph )

Proof

Step Hyp Ref Expression
1 uhgr0e.g
 |-  ( ph -> G e. W )
2 uhgr0e.e
 |-  ( ph -> ( iEdg ` G ) = (/) )
3 f0
 |-  (/) : (/) --> ( ~P ( Vtx ` G ) \ { (/) } )
4 dm0
 |-  dom (/) = (/)
5 4 feq2i
 |-  ( (/) : dom (/) --> ( ~P ( Vtx ` G ) \ { (/) } ) <-> (/) : (/) --> ( ~P ( Vtx ` G ) \ { (/) } ) )
6 3 5 mpbir
 |-  (/) : dom (/) --> ( ~P ( Vtx ` G ) \ { (/) } )
7 eqid
 |-  ( Vtx ` G ) = ( Vtx ` G )
8 eqid
 |-  ( iEdg ` G ) = ( iEdg ` G )
9 7 8 isuhgr
 |-  ( G e. W -> ( G e. UHGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P ( Vtx ` G ) \ { (/) } ) ) )
10 1 9 syl
 |-  ( ph -> ( G e. UHGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P ( Vtx ` G ) \ { (/) } ) ) )
11 id
 |-  ( ( iEdg ` G ) = (/) -> ( iEdg ` G ) = (/) )
12 dmeq
 |-  ( ( iEdg ` G ) = (/) -> dom ( iEdg ` G ) = dom (/) )
13 11 12 feq12d
 |-  ( ( iEdg ` G ) = (/) -> ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P ( Vtx ` G ) \ { (/) } ) <-> (/) : dom (/) --> ( ~P ( Vtx ` G ) \ { (/) } ) ) )
14 2 13 syl
 |-  ( ph -> ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P ( Vtx ` G ) \ { (/) } ) <-> (/) : dom (/) --> ( ~P ( Vtx ` G ) \ { (/) } ) ) )
15 10 14 bitrd
 |-  ( ph -> ( G e. UHGraph <-> (/) : dom (/) --> ( ~P ( Vtx ` G ) \ { (/) } ) ) )
16 6 15 mpbiri
 |-  ( ph -> G e. UHGraph )