| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uhgr0e.g |
|- ( ph -> G e. W ) |
| 2 |
|
uhgr0e.e |
|- ( ph -> ( iEdg ` G ) = (/) ) |
| 3 |
|
f0 |
|- (/) : (/) --> ( ~P ( Vtx ` G ) \ { (/) } ) |
| 4 |
|
dm0 |
|- dom (/) = (/) |
| 5 |
4
|
feq2i |
|- ( (/) : dom (/) --> ( ~P ( Vtx ` G ) \ { (/) } ) <-> (/) : (/) --> ( ~P ( Vtx ` G ) \ { (/) } ) ) |
| 6 |
3 5
|
mpbir |
|- (/) : dom (/) --> ( ~P ( Vtx ` G ) \ { (/) } ) |
| 7 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 8 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
| 9 |
7 8
|
isuhgr |
|- ( G e. W -> ( G e. UHGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P ( Vtx ` G ) \ { (/) } ) ) ) |
| 10 |
1 9
|
syl |
|- ( ph -> ( G e. UHGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P ( Vtx ` G ) \ { (/) } ) ) ) |
| 11 |
|
id |
|- ( ( iEdg ` G ) = (/) -> ( iEdg ` G ) = (/) ) |
| 12 |
|
dmeq |
|- ( ( iEdg ` G ) = (/) -> dom ( iEdg ` G ) = dom (/) ) |
| 13 |
11 12
|
feq12d |
|- ( ( iEdg ` G ) = (/) -> ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P ( Vtx ` G ) \ { (/) } ) <-> (/) : dom (/) --> ( ~P ( Vtx ` G ) \ { (/) } ) ) ) |
| 14 |
2 13
|
syl |
|- ( ph -> ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P ( Vtx ` G ) \ { (/) } ) <-> (/) : dom (/) --> ( ~P ( Vtx ` G ) \ { (/) } ) ) ) |
| 15 |
10 14
|
bitrd |
|- ( ph -> ( G e. UHGraph <-> (/) : dom (/) --> ( ~P ( Vtx ` G ) \ { (/) } ) ) ) |
| 16 |
6 15
|
mpbiri |
|- ( ph -> G e. UHGraph ) |