| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uhgr0e.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) |
| 2 |
|
uhgr0e.e |
⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = ∅ ) |
| 3 |
|
f0 |
⊢ ∅ : ∅ ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) |
| 4 |
|
dm0 |
⊢ dom ∅ = ∅ |
| 5 |
4
|
feq2i |
⊢ ( ∅ : dom ∅ ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ↔ ∅ : ∅ ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) |
| 6 |
3 5
|
mpbir |
⊢ ∅ : dom ∅ ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) |
| 7 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
| 8 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
| 9 |
7 8
|
isuhgr |
⊢ ( 𝐺 ∈ 𝑊 → ( 𝐺 ∈ UHGraph ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) ) |
| 10 |
1 9
|
syl |
⊢ ( 𝜑 → ( 𝐺 ∈ UHGraph ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) ) |
| 11 |
|
id |
⊢ ( ( iEdg ‘ 𝐺 ) = ∅ → ( iEdg ‘ 𝐺 ) = ∅ ) |
| 12 |
|
dmeq |
⊢ ( ( iEdg ‘ 𝐺 ) = ∅ → dom ( iEdg ‘ 𝐺 ) = dom ∅ ) |
| 13 |
11 12
|
feq12d |
⊢ ( ( iEdg ‘ 𝐺 ) = ∅ → ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ↔ ∅ : dom ∅ ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) ) |
| 14 |
2 13
|
syl |
⊢ ( 𝜑 → ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ↔ ∅ : dom ∅ ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) ) |
| 15 |
10 14
|
bitrd |
⊢ ( 𝜑 → ( 𝐺 ∈ UHGraph ↔ ∅ : dom ∅ ⟶ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) ) |
| 16 |
6 15
|
mpbiri |
⊢ ( 𝜑 → 𝐺 ∈ UHGraph ) |