| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uhgrvtxedgiedgb.i |
|- I = ( iEdg ` G ) |
| 2 |
|
uhgrvtxedgiedgb.e |
|- E = ( Edg ` G ) |
| 3 |
|
edgval |
|- ( Edg ` G ) = ran ( iEdg ` G ) |
| 4 |
3
|
a1i |
|- ( G e. UHGraph -> ( Edg ` G ) = ran ( iEdg ` G ) ) |
| 5 |
1
|
rneqi |
|- ran I = ran ( iEdg ` G ) |
| 6 |
4 2 5
|
3eqtr4g |
|- ( G e. UHGraph -> E = ran I ) |
| 7 |
6
|
rexeqdv |
|- ( G e. UHGraph -> ( E. e e. E U e. e <-> E. e e. ran I U e. e ) ) |
| 8 |
1
|
uhgrfun |
|- ( G e. UHGraph -> Fun I ) |
| 9 |
8
|
funfnd |
|- ( G e. UHGraph -> I Fn dom I ) |
| 10 |
|
eleq2 |
|- ( e = ( I ` i ) -> ( U e. e <-> U e. ( I ` i ) ) ) |
| 11 |
10
|
rexrn |
|- ( I Fn dom I -> ( E. e e. ran I U e. e <-> E. i e. dom I U e. ( I ` i ) ) ) |
| 12 |
9 11
|
syl |
|- ( G e. UHGraph -> ( E. e e. ran I U e. e <-> E. i e. dom I U e. ( I ` i ) ) ) |
| 13 |
7 12
|
bitrd |
|- ( G e. UHGraph -> ( E. e e. E U e. e <-> E. i e. dom I U e. ( I ` i ) ) ) |
| 14 |
13
|
adantr |
|- ( ( G e. UHGraph /\ U e. V ) -> ( E. e e. E U e. e <-> E. i e. dom I U e. ( I ` i ) ) ) |
| 15 |
14
|
bicomd |
|- ( ( G e. UHGraph /\ U e. V ) -> ( E. i e. dom I U e. ( I ` i ) <-> E. e e. E U e. e ) ) |