| Step |
Hyp |
Ref |
Expression |
| 1 |
|
umgredgnlp.e |
|- E = ( Edg ` G ) |
| 2 |
|
vex |
|- v e. _V |
| 3 |
|
hashsng |
|- ( v e. _V -> ( # ` { v } ) = 1 ) |
| 4 |
|
1ne2 |
|- 1 =/= 2 |
| 5 |
4
|
neii |
|- -. 1 = 2 |
| 6 |
|
eqeq1 |
|- ( ( # ` { v } ) = 1 -> ( ( # ` { v } ) = 2 <-> 1 = 2 ) ) |
| 7 |
5 6
|
mtbiri |
|- ( ( # ` { v } ) = 1 -> -. ( # ` { v } ) = 2 ) |
| 8 |
2 3 7
|
mp2b |
|- -. ( # ` { v } ) = 2 |
| 9 |
|
fveqeq2 |
|- ( C = { v } -> ( ( # ` C ) = 2 <-> ( # ` { v } ) = 2 ) ) |
| 10 |
8 9
|
mtbiri |
|- ( C = { v } -> -. ( # ` C ) = 2 ) |
| 11 |
10
|
intnand |
|- ( C = { v } -> -. ( C e. ~P ( Vtx ` G ) /\ ( # ` C ) = 2 ) ) |
| 12 |
1
|
eleq2i |
|- ( C e. E <-> C e. ( Edg ` G ) ) |
| 13 |
|
edgumgr |
|- ( ( G e. UMGraph /\ C e. ( Edg ` G ) ) -> ( C e. ~P ( Vtx ` G ) /\ ( # ` C ) = 2 ) ) |
| 14 |
12 13
|
sylan2b |
|- ( ( G e. UMGraph /\ C e. E ) -> ( C e. ~P ( Vtx ` G ) /\ ( # ` C ) = 2 ) ) |
| 15 |
11 14
|
nsyl3 |
|- ( ( G e. UMGraph /\ C e. E ) -> -. C = { v } ) |
| 16 |
15
|
nexdv |
|- ( ( G e. UMGraph /\ C e. E ) -> -. E. v C = { v } ) |