Step |
Hyp |
Ref |
Expression |
1 |
|
umgredgnlp.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
2 |
|
vex |
⊢ 𝑣 ∈ V |
3 |
|
hashsng |
⊢ ( 𝑣 ∈ V → ( ♯ ‘ { 𝑣 } ) = 1 ) |
4 |
|
1ne2 |
⊢ 1 ≠ 2 |
5 |
4
|
neii |
⊢ ¬ 1 = 2 |
6 |
|
eqeq1 |
⊢ ( ( ♯ ‘ { 𝑣 } ) = 1 → ( ( ♯ ‘ { 𝑣 } ) = 2 ↔ 1 = 2 ) ) |
7 |
5 6
|
mtbiri |
⊢ ( ( ♯ ‘ { 𝑣 } ) = 1 → ¬ ( ♯ ‘ { 𝑣 } ) = 2 ) |
8 |
2 3 7
|
mp2b |
⊢ ¬ ( ♯ ‘ { 𝑣 } ) = 2 |
9 |
|
fveqeq2 |
⊢ ( 𝐶 = { 𝑣 } → ( ( ♯ ‘ 𝐶 ) = 2 ↔ ( ♯ ‘ { 𝑣 } ) = 2 ) ) |
10 |
8 9
|
mtbiri |
⊢ ( 𝐶 = { 𝑣 } → ¬ ( ♯ ‘ 𝐶 ) = 2 ) |
11 |
10
|
intnand |
⊢ ( 𝐶 = { 𝑣 } → ¬ ( 𝐶 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐶 ) = 2 ) ) |
12 |
1
|
eleq2i |
⊢ ( 𝐶 ∈ 𝐸 ↔ 𝐶 ∈ ( Edg ‘ 𝐺 ) ) |
13 |
|
edgumgr |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐶 ∈ ( Edg ‘ 𝐺 ) ) → ( 𝐶 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐶 ) = 2 ) ) |
14 |
12 13
|
sylan2b |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐶 ∈ 𝐸 ) → ( 𝐶 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐶 ) = 2 ) ) |
15 |
11 14
|
nsyl3 |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐶 ∈ 𝐸 ) → ¬ 𝐶 = { 𝑣 } ) |
16 |
15
|
nexdv |
⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐶 ∈ 𝐸 ) → ¬ ∃ 𝑣 𝐶 = { 𝑣 } ) |