Description: The countable union of countable sets is countable. Theorem 6Q of Enderton p. 159. See iunctb for indexed union version. (Contributed by NM, 26-Mar-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unictb | |- ( ( A ~<_ _om /\ A. x e. A x ~<_ _om ) -> U. A ~<_ _om ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniiun | |- U. A = U_ x e. A x |
|
| 2 | iunctb | |- ( ( A ~<_ _om /\ A. x e. A x ~<_ _om ) -> U_ x e. A x ~<_ _om ) |
|
| 3 | 1 2 | eqbrtrid | |- ( ( A ~<_ _om /\ A. x e. A x ~<_ _om ) -> U. A ~<_ _om ) |