Metamath Proof Explorer


Theorem unieqOLD

Description: Obsolete version of unieq as of 13-Apr-2024. (Contributed by NM, 10-Aug-1993) (Proof modification is discouraged.) (New usage is discouraged.) 29-Jun-2011.)

Ref Expression
Assertion unieqOLD
|- ( A = B -> U. A = U. B )

Proof

Step Hyp Ref Expression
1 rexeq
 |-  ( A = B -> ( E. x e. A y e. x <-> E. x e. B y e. x ) )
2 1 abbidv
 |-  ( A = B -> { y | E. x e. A y e. x } = { y | E. x e. B y e. x } )
3 dfuni2
 |-  U. A = { y | E. x e. A y e. x }
4 dfuni2
 |-  U. B = { y | E. x e. B y e. x }
5 2 3 4 3eqtr4g
 |-  ( A = B -> U. A = U. B )