Description: Obsolete version of unieq as of 13-Apr-2024. (Contributed by NM, 10-Aug-1993) (Proof modification is discouraged.) (New usage is discouraged.) 29-Jun-2011.)
Ref | Expression | ||
---|---|---|---|
Assertion | unieqOLD | ⊢ ( 𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexeq | ⊢ ( 𝐴 = 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 ↔ ∃ 𝑥 ∈ 𝐵 𝑦 ∈ 𝑥 ) ) | |
2 | 1 | abbidv | ⊢ ( 𝐴 = 𝐵 → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 } = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 ∈ 𝑥 } ) |
3 | dfuni2 | ⊢ ∪ 𝐴 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 } | |
4 | dfuni2 | ⊢ ∪ 𝐵 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 ∈ 𝑥 } | |
5 | 2 3 4 | 3eqtr4g | ⊢ ( 𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵 ) |