Metamath Proof Explorer


Theorem uniin1

Description: Union of intersection. Generalization of half of theorem "Distributive laws" in Enderton p. 30. (Contributed by Thierry Arnoux, 21-Jun-2020)

Ref Expression
Assertion uniin1
|- U_ x e. A ( x i^i B ) = ( U. A i^i B )

Proof

Step Hyp Ref Expression
1 iunin1
 |-  U_ x e. A ( x i^i B ) = ( U_ x e. A x i^i B )
2 uniiun
 |-  U. A = U_ x e. A x
3 2 ineq1i
 |-  ( U. A i^i B ) = ( U_ x e. A x i^i B )
4 1 3 eqtr4i
 |-  U_ x e. A ( x i^i B ) = ( U. A i^i B )