Metamath Proof Explorer


Theorem uniin2

Description: Union of intersection. Generalization of half of theorem "Distributive laws" in Enderton p. 30. (Contributed by Thierry Arnoux, 21-Jun-2020)

Ref Expression
Assertion uniin2
|- U_ x e. B ( A i^i x ) = ( A i^i U. B )

Proof

Step Hyp Ref Expression
1 iunin2
 |-  U_ x e. B ( A i^i x ) = ( A i^i U_ x e. B x )
2 uniiun
 |-  U. B = U_ x e. B x
3 2 ineq2i
 |-  ( A i^i U. B ) = ( A i^i U_ x e. B x )
4 1 3 eqtr4i
 |-  U_ x e. B ( A i^i x ) = ( A i^i U. B )