Description: The union of two numerable sets is numerable. (Contributed by Mario Carneiro, 29-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | unnum | |- ( ( A e. dom card /\ B e. dom card ) -> ( A u. B ) e. dom card ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djunum | |- ( ( A e. dom card /\ B e. dom card ) -> ( A |_| B ) e. dom card ) |
|
2 | undjudom | |- ( ( A e. dom card /\ B e. dom card ) -> ( A u. B ) ~<_ ( A |_| B ) ) |
|
3 | numdom | |- ( ( ( A |_| B ) e. dom card /\ ( A u. B ) ~<_ ( A |_| B ) ) -> ( A u. B ) e. dom card ) |
|
4 | 1 2 3 | syl2anc | |- ( ( A e. dom card /\ B e. dom card ) -> ( A u. B ) e. dom card ) |