Metamath Proof Explorer


Theorem unnum

Description: The union of two numerable sets is numerable. (Contributed by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion unnum
|- ( ( A e. dom card /\ B e. dom card ) -> ( A u. B ) e. dom card )

Proof

Step Hyp Ref Expression
1 djunum
 |-  ( ( A e. dom card /\ B e. dom card ) -> ( A |_| B ) e. dom card )
2 undjudom
 |-  ( ( A e. dom card /\ B e. dom card ) -> ( A u. B ) ~<_ ( A |_| B ) )
3 numdom
 |-  ( ( ( A |_| B ) e. dom card /\ ( A u. B ) ~<_ ( A |_| B ) ) -> ( A u. B ) e. dom card )
4 1 2 3 syl2anc
 |-  ( ( A e. dom card /\ B e. dom card ) -> ( A u. B ) e. dom card )