| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ex |
|- (/) e. _V |
| 2 |
|
xpsnen2g |
|- ( ( (/) e. _V /\ A e. V ) -> ( { (/) } X. A ) ~~ A ) |
| 3 |
1 2
|
mpan |
|- ( A e. V -> ( { (/) } X. A ) ~~ A ) |
| 4 |
|
ensym |
|- ( ( { (/) } X. A ) ~~ A -> A ~~ ( { (/) } X. A ) ) |
| 5 |
|
endom |
|- ( A ~~ ( { (/) } X. A ) -> A ~<_ ( { (/) } X. A ) ) |
| 6 |
3 4 5
|
3syl |
|- ( A e. V -> A ~<_ ( { (/) } X. A ) ) |
| 7 |
|
1on |
|- 1o e. On |
| 8 |
|
xpsnen2g |
|- ( ( 1o e. On /\ B e. W ) -> ( { 1o } X. B ) ~~ B ) |
| 9 |
7 8
|
mpan |
|- ( B e. W -> ( { 1o } X. B ) ~~ B ) |
| 10 |
|
ensym |
|- ( ( { 1o } X. B ) ~~ B -> B ~~ ( { 1o } X. B ) ) |
| 11 |
|
endom |
|- ( B ~~ ( { 1o } X. B ) -> B ~<_ ( { 1o } X. B ) ) |
| 12 |
9 10 11
|
3syl |
|- ( B e. W -> B ~<_ ( { 1o } X. B ) ) |
| 13 |
|
xp01disjl |
|- ( ( { (/) } X. A ) i^i ( { 1o } X. B ) ) = (/) |
| 14 |
|
undom |
|- ( ( ( A ~<_ ( { (/) } X. A ) /\ B ~<_ ( { 1o } X. B ) ) /\ ( ( { (/) } X. A ) i^i ( { 1o } X. B ) ) = (/) ) -> ( A u. B ) ~<_ ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ) |
| 15 |
13 14
|
mpan2 |
|- ( ( A ~<_ ( { (/) } X. A ) /\ B ~<_ ( { 1o } X. B ) ) -> ( A u. B ) ~<_ ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ) |
| 16 |
6 12 15
|
syl2an |
|- ( ( A e. V /\ B e. W ) -> ( A u. B ) ~<_ ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) ) |
| 17 |
|
df-dju |
|- ( A |_| B ) = ( ( { (/) } X. A ) u. ( { 1o } X. B ) ) |
| 18 |
16 17
|
breqtrrdi |
|- ( ( A e. V /\ B e. W ) -> ( A u. B ) ~<_ ( A |_| B ) ) |