Metamath Proof Explorer


Theorem upgrisupwlkALT

Description: Alternate proof of upgriswlk using the definition of UPGraph and related theorems. (Contributed by AV, 2-Jan-2021) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses upgrisupwlkALT.v
|- V = ( Vtx ` G )
upgrisupwlkALT.i
|- I = ( iEdg ` G )
Assertion upgrisupwlkALT
|- ( ( G e. UPGraph /\ F e. U /\ P e. Z ) -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) )

Proof

Step Hyp Ref Expression
1 upgrisupwlkALT.v
 |-  V = ( Vtx ` G )
2 upgrisupwlkALT.i
 |-  I = ( iEdg ` G )
3 upgrwlkupwlkb
 |-  ( G e. UPGraph -> ( F ( Walks ` G ) P <-> F ( UPWalks ` G ) P ) )
4 3 3ad2ant1
 |-  ( ( G e. UPGraph /\ F e. U /\ P e. Z ) -> ( F ( Walks ` G ) P <-> F ( UPWalks ` G ) P ) )
5 1 2 isupwlk
 |-  ( ( G e. UPGraph /\ F e. U /\ P e. Z ) -> ( F ( UPWalks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) )
6 4 5 bitrd
 |-  ( ( G e. UPGraph /\ F e. U /\ P e. Z ) -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) )