Description: Alternate proof of upgriswlk using the definition of UPGraph and related theorems. (Contributed by AV, 2-Jan-2021) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgrisupwlkALT.v | |- V = ( Vtx ` G ) | |
| upgrisupwlkALT.i | |- I = ( iEdg ` G ) | ||
| Assertion | upgrisupwlkALT | |- ( ( G e. UPGraph /\ F e. U /\ P e. Z ) -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | upgrisupwlkALT.v | |- V = ( Vtx ` G ) | |
| 2 | upgrisupwlkALT.i | |- I = ( iEdg ` G ) | |
| 3 | upgrwlkupwlkb | |- ( G e. UPGraph -> ( F ( Walks ` G ) P <-> F ( UPWalks ` G ) P ) ) | |
| 4 | 3 | 3ad2ant1 | |- ( ( G e. UPGraph /\ F e. U /\ P e. Z ) -> ( F ( Walks ` G ) P <-> F ( UPWalks ` G ) P ) ) | 
| 5 | 1 2 | isupwlk |  |-  ( ( G e. UPGraph /\ F e. U /\ P e. Z ) -> ( F ( UPWalks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) | 
| 6 | 4 5 | bitrd |  |-  ( ( G e. UPGraph /\ F e. U /\ P e. Z ) -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |