Metamath Proof Explorer


Theorem usgredg

Description: For each edge in a simple graph, there are two distinct vertices which are connected by this edge. (Contributed by Alexander van der Vekens, 9-Dec-2017) (Revised by AV, 17-Oct-2020) (Shortened by AV, 25-Nov-2020.)

Ref Expression
Hypotheses edgssv2.v
|- V = ( Vtx ` G )
edgssv2.e
|- E = ( Edg ` G )
Assertion usgredg
|- ( ( G e. USGraph /\ C e. E ) -> E. a e. V E. b e. V ( a =/= b /\ C = { a , b } ) )

Proof

Step Hyp Ref Expression
1 edgssv2.v
 |-  V = ( Vtx ` G )
2 edgssv2.e
 |-  E = ( Edg ` G )
3 usgrumgr
 |-  ( G e. USGraph -> G e. UMGraph )
4 1 2 umgredg
 |-  ( ( G e. UMGraph /\ C e. E ) -> E. a e. V E. b e. V ( a =/= b /\ C = { a , b } ) )
5 3 4 sylan
 |-  ( ( G e. USGraph /\ C e. E ) -> E. a e. V E. b e. V ( a =/= b /\ C = { a , b } ) )