| Step |
Hyp |
Ref |
Expression |
| 1 |
|
usgrexmpl1.v |
|- V = ( 0 ... 5 ) |
| 2 |
|
usgrexmpl1.e |
|- E = <" { 0 , 1 } { 0 , 2 } { 1 , 2 } { 0 , 3 } { 3 , 4 } { 3 , 5 } { 4 , 5 } "> |
| 3 |
|
usgrexmpl1.g |
|- G = <. V , E >. |
| 4 |
3
|
fveq2i |
|- ( Vtx ` G ) = ( Vtx ` <. V , E >. ) |
| 5 |
1
|
ovexi |
|- V e. _V |
| 6 |
|
s7cli |
|- <" { 0 , 1 } { 0 , 2 } { 1 , 2 } { 0 , 3 } { 3 , 4 } { 3 , 5 } { 4 , 5 } "> e. Word _V |
| 7 |
2 6
|
eqeltri |
|- E e. Word _V |
| 8 |
|
opvtxfv |
|- ( ( V e. _V /\ E e. Word _V ) -> ( Vtx ` <. V , E >. ) = V ) |
| 9 |
5 7 8
|
mp2an |
|- ( Vtx ` <. V , E >. ) = V |
| 10 |
4 9
|
eqtri |
|- ( Vtx ` G ) = V |
| 11 |
|
fz0to5un2tp |
|- ( 0 ... 5 ) = ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) |
| 12 |
10 1 11
|
3eqtri |
|- ( Vtx ` G ) = ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) |