Metamath Proof Explorer


Theorem fz0to5un2tp

Description: An integer range from 0 to 5 is the union of two triples. (Contributed by AV, 30-Jul-2025)

Ref Expression
Assertion fz0to5un2tp
|- ( 0 ... 5 ) = ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } )

Proof

Step Hyp Ref Expression
1 2p1e3
 |-  ( 2 + 1 ) = 3
2 0z
 |-  0 e. ZZ
3 3z
 |-  3 e. ZZ
4 0re
 |-  0 e. RR
5 3re
 |-  3 e. RR
6 3pos
 |-  0 < 3
7 4 5 6 ltleii
 |-  0 <_ 3
8 eluz2
 |-  ( 3 e. ( ZZ>= ` 0 ) <-> ( 0 e. ZZ /\ 3 e. ZZ /\ 0 <_ 3 ) )
9 2 3 7 8 mpbir3an
 |-  3 e. ( ZZ>= ` 0 )
10 1 9 eqeltri
 |-  ( 2 + 1 ) e. ( ZZ>= ` 0 )
11 2z
 |-  2 e. ZZ
12 5nn0
 |-  5 e. NN0
13 12 nn0zi
 |-  5 e. ZZ
14 2re
 |-  2 e. RR
15 5re
 |-  5 e. RR
16 2lt5
 |-  2 < 5
17 14 15 16 ltleii
 |-  2 <_ 5
18 eluz2
 |-  ( 5 e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ 5 e. ZZ /\ 2 <_ 5 ) )
19 11 13 17 18 mpbir3an
 |-  5 e. ( ZZ>= ` 2 )
20 fzsplit2
 |-  ( ( ( 2 + 1 ) e. ( ZZ>= ` 0 ) /\ 5 e. ( ZZ>= ` 2 ) ) -> ( 0 ... 5 ) = ( ( 0 ... 2 ) u. ( ( 2 + 1 ) ... 5 ) ) )
21 10 19 20 mp2an
 |-  ( 0 ... 5 ) = ( ( 0 ... 2 ) u. ( ( 2 + 1 ) ... 5 ) )
22 fz0tp
 |-  ( 0 ... 2 ) = { 0 , 1 , 2 }
23 1 oveq1i
 |-  ( ( 2 + 1 ) ... 5 ) = ( 3 ... 5 )
24 3p2e5
 |-  ( 3 + 2 ) = 5
25 24 eqcomi
 |-  5 = ( 3 + 2 )
26 25 oveq2i
 |-  ( 3 ... 5 ) = ( 3 ... ( 3 + 2 ) )
27 fztp
 |-  ( 3 e. ZZ -> ( 3 ... ( 3 + 2 ) ) = { 3 , ( 3 + 1 ) , ( 3 + 2 ) } )
28 3 27 ax-mp
 |-  ( 3 ... ( 3 + 2 ) ) = { 3 , ( 3 + 1 ) , ( 3 + 2 ) }
29 eqid
 |-  3 = 3
30 id
 |-  ( 3 = 3 -> 3 = 3 )
31 3p1e4
 |-  ( 3 + 1 ) = 4
32 31 a1i
 |-  ( 3 = 3 -> ( 3 + 1 ) = 4 )
33 24 a1i
 |-  ( 3 = 3 -> ( 3 + 2 ) = 5 )
34 30 32 33 tpeq123d
 |-  ( 3 = 3 -> { 3 , ( 3 + 1 ) , ( 3 + 2 ) } = { 3 , 4 , 5 } )
35 29 34 ax-mp
 |-  { 3 , ( 3 + 1 ) , ( 3 + 2 ) } = { 3 , 4 , 5 }
36 26 28 35 3eqtri
 |-  ( 3 ... 5 ) = { 3 , 4 , 5 }
37 23 36 eqtri
 |-  ( ( 2 + 1 ) ... 5 ) = { 3 , 4 , 5 }
38 22 37 uneq12i
 |-  ( ( 0 ... 2 ) u. ( ( 2 + 1 ) ... 5 ) ) = ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } )
39 21 38 eqtri
 |-  ( 0 ... 5 ) = ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } )