Step |
Hyp |
Ref |
Expression |
1 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
2 |
|
0z |
|- 0 e. ZZ |
3 |
|
3z |
|- 3 e. ZZ |
4 |
|
0re |
|- 0 e. RR |
5 |
|
3re |
|- 3 e. RR |
6 |
|
3pos |
|- 0 < 3 |
7 |
4 5 6
|
ltleii |
|- 0 <_ 3 |
8 |
|
eluz2 |
|- ( 3 e. ( ZZ>= ` 0 ) <-> ( 0 e. ZZ /\ 3 e. ZZ /\ 0 <_ 3 ) ) |
9 |
2 3 7 8
|
mpbir3an |
|- 3 e. ( ZZ>= ` 0 ) |
10 |
1 9
|
eqeltri |
|- ( 2 + 1 ) e. ( ZZ>= ` 0 ) |
11 |
|
2z |
|- 2 e. ZZ |
12 |
|
5nn0 |
|- 5 e. NN0 |
13 |
12
|
nn0zi |
|- 5 e. ZZ |
14 |
|
2re |
|- 2 e. RR |
15 |
|
5re |
|- 5 e. RR |
16 |
|
2lt5 |
|- 2 < 5 |
17 |
14 15 16
|
ltleii |
|- 2 <_ 5 |
18 |
|
eluz2 |
|- ( 5 e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ 5 e. ZZ /\ 2 <_ 5 ) ) |
19 |
11 13 17 18
|
mpbir3an |
|- 5 e. ( ZZ>= ` 2 ) |
20 |
|
fzsplit2 |
|- ( ( ( 2 + 1 ) e. ( ZZ>= ` 0 ) /\ 5 e. ( ZZ>= ` 2 ) ) -> ( 0 ... 5 ) = ( ( 0 ... 2 ) u. ( ( 2 + 1 ) ... 5 ) ) ) |
21 |
10 19 20
|
mp2an |
|- ( 0 ... 5 ) = ( ( 0 ... 2 ) u. ( ( 2 + 1 ) ... 5 ) ) |
22 |
|
fz0tp |
|- ( 0 ... 2 ) = { 0 , 1 , 2 } |
23 |
1
|
oveq1i |
|- ( ( 2 + 1 ) ... 5 ) = ( 3 ... 5 ) |
24 |
|
3p2e5 |
|- ( 3 + 2 ) = 5 |
25 |
24
|
eqcomi |
|- 5 = ( 3 + 2 ) |
26 |
25
|
oveq2i |
|- ( 3 ... 5 ) = ( 3 ... ( 3 + 2 ) ) |
27 |
|
fztp |
|- ( 3 e. ZZ -> ( 3 ... ( 3 + 2 ) ) = { 3 , ( 3 + 1 ) , ( 3 + 2 ) } ) |
28 |
3 27
|
ax-mp |
|- ( 3 ... ( 3 + 2 ) ) = { 3 , ( 3 + 1 ) , ( 3 + 2 ) } |
29 |
|
eqid |
|- 3 = 3 |
30 |
|
id |
|- ( 3 = 3 -> 3 = 3 ) |
31 |
|
3p1e4 |
|- ( 3 + 1 ) = 4 |
32 |
31
|
a1i |
|- ( 3 = 3 -> ( 3 + 1 ) = 4 ) |
33 |
24
|
a1i |
|- ( 3 = 3 -> ( 3 + 2 ) = 5 ) |
34 |
30 32 33
|
tpeq123d |
|- ( 3 = 3 -> { 3 , ( 3 + 1 ) , ( 3 + 2 ) } = { 3 , 4 , 5 } ) |
35 |
29 34
|
ax-mp |
|- { 3 , ( 3 + 1 ) , ( 3 + 2 ) } = { 3 , 4 , 5 } |
36 |
26 28 35
|
3eqtri |
|- ( 3 ... 5 ) = { 3 , 4 , 5 } |
37 |
23 36
|
eqtri |
|- ( ( 2 + 1 ) ... 5 ) = { 3 , 4 , 5 } |
38 |
22 37
|
uneq12i |
|- ( ( 0 ... 2 ) u. ( ( 2 + 1 ) ... 5 ) ) = ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) |
39 |
21 38
|
eqtri |
|- ( 0 ... 5 ) = ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) |