| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ussval.1 |
|- B = ( Base ` W ) |
| 2 |
|
ussval.2 |
|- U = ( UnifSet ` W ) |
| 3 |
1 1
|
xpeq12i |
|- ( B X. B ) = ( ( Base ` W ) X. ( Base ` W ) ) |
| 4 |
2 3
|
oveq12i |
|- ( U |`t ( B X. B ) ) = ( ( UnifSet ` W ) |`t ( ( Base ` W ) X. ( Base ` W ) ) ) |
| 5 |
|
fveq2 |
|- ( w = W -> ( UnifSet ` w ) = ( UnifSet ` W ) ) |
| 6 |
|
fveq2 |
|- ( w = W -> ( Base ` w ) = ( Base ` W ) ) |
| 7 |
6
|
sqxpeqd |
|- ( w = W -> ( ( Base ` w ) X. ( Base ` w ) ) = ( ( Base ` W ) X. ( Base ` W ) ) ) |
| 8 |
5 7
|
oveq12d |
|- ( w = W -> ( ( UnifSet ` w ) |`t ( ( Base ` w ) X. ( Base ` w ) ) ) = ( ( UnifSet ` W ) |`t ( ( Base ` W ) X. ( Base ` W ) ) ) ) |
| 9 |
|
df-uss |
|- UnifSt = ( w e. _V |-> ( ( UnifSet ` w ) |`t ( ( Base ` w ) X. ( Base ` w ) ) ) ) |
| 10 |
|
ovex |
|- ( ( UnifSet ` W ) |`t ( ( Base ` W ) X. ( Base ` W ) ) ) e. _V |
| 11 |
8 9 10
|
fvmpt |
|- ( W e. _V -> ( UnifSt ` W ) = ( ( UnifSet ` W ) |`t ( ( Base ` W ) X. ( Base ` W ) ) ) ) |
| 12 |
4 11
|
eqtr4id |
|- ( W e. _V -> ( U |`t ( B X. B ) ) = ( UnifSt ` W ) ) |
| 13 |
|
0rest |
|- ( (/) |`t ( B X. B ) ) = (/) |
| 14 |
|
fvprc |
|- ( -. W e. _V -> ( UnifSet ` W ) = (/) ) |
| 15 |
2 14
|
eqtrid |
|- ( -. W e. _V -> U = (/) ) |
| 16 |
15
|
oveq1d |
|- ( -. W e. _V -> ( U |`t ( B X. B ) ) = ( (/) |`t ( B X. B ) ) ) |
| 17 |
|
fvprc |
|- ( -. W e. _V -> ( UnifSt ` W ) = (/) ) |
| 18 |
13 16 17
|
3eqtr4a |
|- ( -. W e. _V -> ( U |`t ( B X. B ) ) = ( UnifSt ` W ) ) |
| 19 |
12 18
|
pm2.61i |
|- ( U |`t ( B X. B ) ) = ( UnifSt ` W ) |