| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- A = A |
| 2 |
|
resieq |
|- ( ( A e. X /\ A e. X ) -> ( A ( _I |` X ) A <-> A = A ) ) |
| 3 |
1 2
|
mpbiri |
|- ( ( A e. X /\ A e. X ) -> A ( _I |` X ) A ) |
| 4 |
3
|
anidms |
|- ( A e. X -> A ( _I |` X ) A ) |
| 5 |
4
|
3ad2ant3 |
|- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ A e. X ) -> A ( _I |` X ) A ) |
| 6 |
|
ustdiag |
|- ( ( U e. ( UnifOn ` X ) /\ V e. U ) -> ( _I |` X ) C_ V ) |
| 7 |
6
|
ssbrd |
|- ( ( U e. ( UnifOn ` X ) /\ V e. U ) -> ( A ( _I |` X ) A -> A V A ) ) |
| 8 |
7
|
3adant3 |
|- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ A e. X ) -> ( A ( _I |` X ) A -> A V A ) ) |
| 9 |
5 8
|
mpd |
|- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ A e. X ) -> A V A ) |