Description: Well-ordering principle: any nonempty subset of an upper set of integers has a unique least element. (Contributed by NM, 8-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uzwo2 | |- ( ( S C_ ( ZZ>= ` M ) /\ S =/= (/) ) -> E! j e. S A. k e. S j <_ k )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | uzssz | |- ( ZZ>= ` M ) C_ ZZ  | 
						|
| 2 | zssre | |- ZZ C_ RR  | 
						|
| 3 | 1 2 | sstri | |- ( ZZ>= ` M ) C_ RR  | 
						
| 4 | sstr | |- ( ( S C_ ( ZZ>= ` M ) /\ ( ZZ>= ` M ) C_ RR ) -> S C_ RR )  | 
						|
| 5 | 3 4 | mpan2 | |- ( S C_ ( ZZ>= ` M ) -> S C_ RR )  | 
						
| 6 | uzwo | |- ( ( S C_ ( ZZ>= ` M ) /\ S =/= (/) ) -> E. j e. S A. k e. S j <_ k )  | 
						|
| 7 | lbreu | |- ( ( S C_ RR /\ E. j e. S A. k e. S j <_ k ) -> E! j e. S A. k e. S j <_ k )  | 
						|
| 8 | 5 6 7 | syl2an2r | |- ( ( S C_ ( ZZ>= ` M ) /\ S =/= (/) ) -> E! j e. S A. k e. S j <_ k )  |