| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccmbl |  |-  ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) e. dom vol ) | 
						
							| 2 |  | mblvol |  |-  ( ( A [,] B ) e. dom vol -> ( vol ` ( A [,] B ) ) = ( vol* ` ( A [,] B ) ) ) | 
						
							| 3 | 1 2 | syl |  |-  ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A [,] B ) ) = ( vol* ` ( A [,] B ) ) ) | 
						
							| 4 | 3 | 3adant3 |  |-  ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol ` ( A [,] B ) ) = ( vol* ` ( A [,] B ) ) ) | 
						
							| 5 |  | ovolicc |  |-  ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol* ` ( A [,] B ) ) = ( B - A ) ) | 
						
							| 6 | 4 5 | eqtrd |  |-  ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( vol ` ( A [,] B ) ) = ( B - A ) ) |