| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccmbl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴 [,] 𝐵 )  ∈  dom  vol ) | 
						
							| 2 |  | mblvol | ⊢ ( ( 𝐴 [,] 𝐵 )  ∈  dom  vol  →  ( vol ‘ ( 𝐴 [,] 𝐵 ) )  =  ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( vol ‘ ( 𝐴 [,] 𝐵 ) )  =  ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 4 | 3 | 3adant3 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  ≤  𝐵 )  →  ( vol ‘ ( 𝐴 [,] 𝐵 ) )  =  ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 5 |  | ovolicc | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  ≤  𝐵 )  →  ( vol* ‘ ( 𝐴 [,] 𝐵 ) )  =  ( 𝐵  −  𝐴 ) ) | 
						
							| 6 | 4 5 | eqtrd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  ≤  𝐵 )  →  ( vol ‘ ( 𝐴 [,] 𝐵 ) )  =  ( 𝐵  −  𝐴 ) ) |