| Step | Hyp | Ref | Expression | 
						
							| 1 |  | voliccico.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | voliccico.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | iftrue | ⊢ ( 𝐴  <  𝐵  →  if ( 𝐴  <  𝐵 ,  ( 𝐵  −  𝐴 ) ,  0 )  =  ( 𝐵  −  𝐴 ) ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  𝐴  <  𝐵 )  →  if ( 𝐴  <  𝐵 ,  ( 𝐵  −  𝐴 ) ,  0 )  =  ( 𝐵  −  𝐴 ) ) | 
						
							| 5 | 2 | recnd | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 6 | 5 | subidd | ⊢ ( 𝜑  →  ( 𝐵  −  𝐵 )  =  0 ) | 
						
							| 7 | 6 | eqcomd | ⊢ ( 𝜑  →  0  =  ( 𝐵  −  𝐵 ) ) | 
						
							| 8 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  ¬  𝐴  <  𝐵 )  →  0  =  ( 𝐵  −  𝐵 ) ) | 
						
							| 9 |  | iffalse | ⊢ ( ¬  𝐴  <  𝐵  →  if ( 𝐴  <  𝐵 ,  ( 𝐵  −  𝐴 ) ,  0 )  =  0 ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  ¬  𝐴  <  𝐵 )  →  if ( 𝐴  <  𝐵 ,  ( 𝐵  −  𝐴 ) ,  0 )  =  0 ) | 
						
							| 11 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  ¬  𝐴  <  𝐵 )  →  𝜑 ) | 
						
							| 12 | 11 1 | syl | ⊢ ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  ¬  𝐴  <  𝐵 )  →  𝐴  ∈  ℝ ) | 
						
							| 13 | 11 2 | syl | ⊢ ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  ¬  𝐴  <  𝐵 )  →  𝐵  ∈  ℝ ) | 
						
							| 14 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  𝐴  ≤  𝐵 ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  ¬  𝐴  <  𝐵 )  →  𝐴  ≤  𝐵 ) | 
						
							| 16 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  ¬  𝐴  <  𝐵 )  →  ¬  𝐴  <  𝐵 ) | 
						
							| 17 | 12 13 15 16 | lenlteq | ⊢ ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  ¬  𝐴  <  𝐵 )  →  𝐴  =  𝐵 ) | 
						
							| 18 |  | oveq2 | ⊢ ( 𝐴  =  𝐵  →  ( 𝐵  −  𝐴 )  =  ( 𝐵  −  𝐵 ) ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( 𝜑  ∧  𝐴  =  𝐵 )  →  ( 𝐵  −  𝐴 )  =  ( 𝐵  −  𝐵 ) ) | 
						
							| 20 | 11 17 19 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  ¬  𝐴  <  𝐵 )  →  ( 𝐵  −  𝐴 )  =  ( 𝐵  −  𝐵 ) ) | 
						
							| 21 | 8 10 20 | 3eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  ∧  ¬  𝐴  <  𝐵 )  →  if ( 𝐴  <  𝐵 ,  ( 𝐵  −  𝐴 ) ,  0 )  =  ( 𝐵  −  𝐴 ) ) | 
						
							| 22 | 4 21 | pm2.61dan | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  if ( 𝐴  <  𝐵 ,  ( 𝐵  −  𝐴 ) ,  0 )  =  ( 𝐵  −  𝐴 ) ) | 
						
							| 23 | 22 | eqcomd | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ( 𝐵  −  𝐴 )  =  if ( 𝐴  <  𝐵 ,  ( 𝐵  −  𝐴 ) ,  0 ) ) | 
						
							| 24 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  𝐴  ∈  ℝ ) | 
						
							| 25 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  𝐵  ∈  ℝ ) | 
						
							| 26 |  | volicc | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  ≤  𝐵 )  →  ( vol ‘ ( 𝐴 [,] 𝐵 ) )  =  ( 𝐵  −  𝐴 ) ) | 
						
							| 27 | 24 25 14 26 | syl3anc | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ( vol ‘ ( 𝐴 [,] 𝐵 ) )  =  ( 𝐵  −  𝐴 ) ) | 
						
							| 28 |  | volico | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( vol ‘ ( 𝐴 [,) 𝐵 ) )  =  if ( 𝐴  <  𝐵 ,  ( 𝐵  −  𝐴 ) ,  0 ) ) | 
						
							| 29 | 1 2 28 | syl2anc | ⊢ ( 𝜑  →  ( vol ‘ ( 𝐴 [,) 𝐵 ) )  =  if ( 𝐴  <  𝐵 ,  ( 𝐵  −  𝐴 ) ,  0 ) ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ( vol ‘ ( 𝐴 [,) 𝐵 ) )  =  if ( 𝐴  <  𝐵 ,  ( 𝐵  −  𝐴 ) ,  0 ) ) | 
						
							| 31 | 23 27 30 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝐴  ≤  𝐵 )  →  ( vol ‘ ( 𝐴 [,] 𝐵 ) )  =  ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ) | 
						
							| 32 |  | simpl | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ≤  𝐵 )  →  𝜑 ) | 
						
							| 33 |  | simpr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ≤  𝐵 )  →  ¬  𝐴  ≤  𝐵 ) | 
						
							| 34 | 32 2 | syl | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ≤  𝐵 )  →  𝐵  ∈  ℝ ) | 
						
							| 35 | 32 1 | syl | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ≤  𝐵 )  →  𝐴  ∈  ℝ ) | 
						
							| 36 | 34 35 | ltnled | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ≤  𝐵 )  →  ( 𝐵  <  𝐴  ↔  ¬  𝐴  ≤  𝐵 ) ) | 
						
							| 37 | 33 36 | mpbird | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ≤  𝐵 )  →  𝐵  <  𝐴 ) | 
						
							| 38 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐴 )  →  𝐵  <  𝐴 ) | 
						
							| 39 | 1 | rexrd | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
						
							| 40 | 2 | rexrd | ⊢ ( 𝜑  →  𝐵  ∈  ℝ* ) | 
						
							| 41 |  | icc0 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( ( 𝐴 [,] 𝐵 )  =  ∅  ↔  𝐵  <  𝐴 ) ) | 
						
							| 42 | 39 40 41 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐴 [,] 𝐵 )  =  ∅  ↔  𝐵  <  𝐴 ) ) | 
						
							| 43 | 42 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐴 )  →  ( ( 𝐴 [,] 𝐵 )  =  ∅  ↔  𝐵  <  𝐴 ) ) | 
						
							| 44 | 38 43 | mpbird | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐴 )  →  ( 𝐴 [,] 𝐵 )  =  ∅ ) | 
						
							| 45 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 46 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐴 )  →  𝐴  ∈  ℝ ) | 
						
							| 47 | 45 46 38 | ltled | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐴 )  →  𝐵  ≤  𝐴 ) | 
						
							| 48 | 46 | rexrd | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐴 )  →  𝐴  ∈  ℝ* ) | 
						
							| 49 | 45 | rexrd | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐴 )  →  𝐵  ∈  ℝ* ) | 
						
							| 50 |  | ico0 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( ( 𝐴 [,) 𝐵 )  =  ∅  ↔  𝐵  ≤  𝐴 ) ) | 
						
							| 51 | 48 49 50 | syl2anc | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐴 )  →  ( ( 𝐴 [,) 𝐵 )  =  ∅  ↔  𝐵  ≤  𝐴 ) ) | 
						
							| 52 | 47 51 | mpbird | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐴 )  →  ( 𝐴 [,) 𝐵 )  =  ∅ ) | 
						
							| 53 | 44 52 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐴 )  →  ( 𝐴 [,] 𝐵 )  =  ( 𝐴 [,) 𝐵 ) ) | 
						
							| 54 | 53 | fveq2d | ⊢ ( ( 𝜑  ∧  𝐵  <  𝐴 )  →  ( vol ‘ ( 𝐴 [,] 𝐵 ) )  =  ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ) | 
						
							| 55 | 32 37 54 | syl2anc | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ≤  𝐵 )  →  ( vol ‘ ( 𝐴 [,] 𝐵 ) )  =  ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ) | 
						
							| 56 | 31 55 | pm2.61dan | ⊢ ( 𝜑  →  ( vol ‘ ( 𝐴 [,] 𝐵 ) )  =  ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ) |