Metamath Proof Explorer


Theorem volicon0

Description: The measure of a nonempty left-closed, right-open interval. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses volicon0.1
|- ( ph -> A e. RR )
volicon0.2
|- ( ph -> B e. RR )
volicon0.3
|- ( ph -> A < B )
Assertion volicon0
|- ( ph -> ( vol ` ( A [,) B ) ) = ( B - A ) )

Proof

Step Hyp Ref Expression
1 volicon0.1
 |-  ( ph -> A e. RR )
2 volicon0.2
 |-  ( ph -> B e. RR )
3 volicon0.3
 |-  ( ph -> A < B )
4 volico
 |-  ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A [,) B ) ) = if ( A < B , ( B - A ) , 0 ) )
5 1 2 4 syl2anc
 |-  ( ph -> ( vol ` ( A [,) B ) ) = if ( A < B , ( B - A ) , 0 ) )
6 3 iftrued
 |-  ( ph -> if ( A < B , ( B - A ) , 0 ) = ( B - A ) )
7 5 6 eqtrd
 |-  ( ph -> ( vol ` ( A [,) B ) ) = ( B - A ) )