Metamath Proof Explorer


Theorem volicon0

Description: The measure of a nonempty left-closed, right-open interval. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses volicon0.1 ( 𝜑𝐴 ∈ ℝ )
volicon0.2 ( 𝜑𝐵 ∈ ℝ )
volicon0.3 ( 𝜑𝐴 < 𝐵 )
Assertion volicon0 ( 𝜑 → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) = ( 𝐵𝐴 ) )

Proof

Step Hyp Ref Expression
1 volicon0.1 ( 𝜑𝐴 ∈ ℝ )
2 volicon0.2 ( 𝜑𝐵 ∈ ℝ )
3 volicon0.3 ( 𝜑𝐴 < 𝐵 )
4 volico ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) = if ( 𝐴 < 𝐵 , ( 𝐵𝐴 ) , 0 ) )
5 1 2 4 syl2anc ( 𝜑 → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) = if ( 𝐴 < 𝐵 , ( 𝐵𝐴 ) , 0 ) )
6 3 iftrued ( 𝜑 → if ( 𝐴 < 𝐵 , ( 𝐵𝐴 ) , 0 ) = ( 𝐵𝐴 ) )
7 5 6 eqtrd ( 𝜑 → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) = ( 𝐵𝐴 ) )