Metamath Proof Explorer


Theorem voliunsge0

Description: The Lebesgue measure function is countably additive. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses voliunsge0.1
|- ( ph -> E : NN --> dom vol )
voliunsge0.2
|- ( ph -> Disj_ n e. NN ( E ` n ) )
Assertion voliunsge0
|- ( ph -> ( vol ` U_ n e. NN ( E ` n ) ) = ( sum^ ` ( n e. NN |-> ( vol ` ( E ` n ) ) ) ) )

Proof

Step Hyp Ref Expression
1 voliunsge0.1
 |-  ( ph -> E : NN --> dom vol )
2 voliunsge0.2
 |-  ( ph -> Disj_ n e. NN ( E ` n ) )
3 eqid
 |-  seq 1 ( + , ( n e. NN |-> ( vol ` ( E ` n ) ) ) ) = seq 1 ( + , ( n e. NN |-> ( vol ` ( E ` n ) ) ) )
4 eqid
 |-  ( n e. NN |-> ( vol ` ( E ` n ) ) ) = ( n e. NN |-> ( vol ` ( E ` n ) ) )
5 3 4 1 2 voliunsge0lem
 |-  ( ph -> ( vol ` U_ n e. NN ( E ` n ) ) = ( sum^ ` ( n e. NN |-> ( vol ` ( E ` n ) ) ) ) )