Description: The Lebesgue measure function is countably additive. (Contributed by Glauco Siliprandi, 3-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | voliunsge0.1 | |- ( ph -> E : NN --> dom vol ) | |
| voliunsge0.2 | |- ( ph -> Disj_ n e. NN ( E ` n ) ) | ||
| Assertion | voliunsge0 | |- ( ph -> ( vol ` U_ n e. NN ( E ` n ) ) = ( sum^ ` ( n e. NN |-> ( vol ` ( E ` n ) ) ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | voliunsge0.1 | |- ( ph -> E : NN --> dom vol ) | |
| 2 | voliunsge0.2 | |- ( ph -> Disj_ n e. NN ( E ` n ) ) | |
| 3 | eqid | |- seq 1 ( + , ( n e. NN |-> ( vol ` ( E ` n ) ) ) ) = seq 1 ( + , ( n e. NN |-> ( vol ` ( E ` n ) ) ) ) | |
| 4 | eqid | |- ( n e. NN |-> ( vol ` ( E ` n ) ) ) = ( n e. NN |-> ( vol ` ( E ` n ) ) ) | |
| 5 | 3 4 1 2 | voliunsge0lem | |- ( ph -> ( vol ` U_ n e. NN ( E ` n ) ) = ( sum^ ` ( n e. NN |-> ( vol ` ( E ` n ) ) ) ) ) |