Description: The Lebesgue measure function is countably additive. (Contributed by Glauco Siliprandi, 3-Mar-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | voliunsge0.1 | |- ( ph -> E : NN --> dom vol ) |
|
voliunsge0.2 | |- ( ph -> Disj_ n e. NN ( E ` n ) ) |
||
Assertion | voliunsge0 | |- ( ph -> ( vol ` U_ n e. NN ( E ` n ) ) = ( sum^ ` ( n e. NN |-> ( vol ` ( E ` n ) ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | voliunsge0.1 | |- ( ph -> E : NN --> dom vol ) |
|
2 | voliunsge0.2 | |- ( ph -> Disj_ n e. NN ( E ` n ) ) |
|
3 | eqid | |- seq 1 ( + , ( n e. NN |-> ( vol ` ( E ` n ) ) ) ) = seq 1 ( + , ( n e. NN |-> ( vol ` ( E ` n ) ) ) ) |
|
4 | eqid | |- ( n e. NN |-> ( vol ` ( E ` n ) ) ) = ( n e. NN |-> ( vol ` ( E ` n ) ) ) |
|
5 | 3 4 1 2 | voliunsge0lem | |- ( ph -> ( vol ` U_ n e. NN ( E ` n ) ) = ( sum^ ` ( n e. NN |-> ( vol ` ( E ` n ) ) ) ) ) |